COSC 6352: Declarative Programming Languages

Lecture 09/11/08 by Dr. Rakesh Verma

Scribe: Susu Liao page 1 of 4

Stores & Locations

Domain of Locations: semantic view of memory addresses, consecutive numbers not needed, only equality test needed.

1. Environment: identifier -> location

E.g. a. x = x + 1; For the first x we need to consult environment; For the second x both environment and store.

 b. x++; Optimization of one lookup to the environment.
This optimization is not just a pragmatic issue but also can change program meaning & termination characteristics.

Store: Locations-> values (e.g. 1. numbers; 2. Boolean values; 3. Locations ;)

2. Locations that are stored in other locations are called pointers.

Targets of assignments can be complex expressions, E.g. a[i] – or they can be anonymous targets using pointers. Therefore, it is not a good idea to use the following model for store:
Store: identifiers -> values
3. Aliasing is another problem with the model above! ---When two or more identifiers refer to the same address or location.
E.g. proc p (var x, y : int)

Begin

… X …

… Y …

End

P(I, I)

Here, X, Y&I are three different names for the same address.

4. Variations on assignment

L1, L2, L3 … Ln := E1, E2, E3 … En

Here, each Li is the locations and Ei are source expression.

5. l-value & R-value

X = X + 1;
Location for X

Contents of the location for X

6. Pointers : Storage insecurities are common

Reasons for having pointers:

--- More efficient since less copying is involved. [Arrays for example are passed by reference in many programming languages.]

--- More control to the programmer in limits of storage allocation & disposal.

--- Sharing of structure.

--- Partial update of a data structure without rebuilding the whole data structure.

Control Structures: 0. Sequential composition of commands
1. Selective composition
If E then C1 else C2 [if E then C]

(1) Pragmatics of case:
 case E of

 .

.

.

Guard expression

Ki: C;

[abbreviation: Ki, Kj:C;]

Kj: C;

.

.

.

 End

(2) Array of commands:

Array of pointers to commands: case E of

.

.

.

Ki1… … Ki2: C;

 End

Array implementation may waste space.

E.g. : case I of

(Array really wants space. Use hash table & a tree structure instead.)

-maxint…-1: ……;

0：……;

 1…maxint: ……;

 End

There are two cases. Are they equivalent?
Case E of
(PL with default)

if E in [K1 … Kn] then (PL with no default)

K1: C1; case E of

.

K1: C1;

.

.

.

.

Kn: Cn;

Kn: Cn

Others Cn+1

end
End

else Cn+1
The answer is NO because of side effects.
2. Iterative composition
(a) Definite iteration [for/ do loop]
(b) Indefinite iteration [while
E do C; Repeat C until E]
Loop

generalization of while & repeat

C1

if C1 is {null } command then while if C2 is null then repeat
 While E

E: test expression is in the middle of the loop

C2

Repeat

Loop

too intricate!

C1

do C1’ exit

 When E1 exit

.

C2

do C2’ exit

 When E2 exit

.

.

do Cn’ exit

.

.

 When En exit

Repeat Cn+1

Sequential and & sequential or

Next lecture: for I = 1 to n do;

 In Pascal, I is not a normalize identifier. ---- No location is allocated for I;

 ---- No assignments to I are allowed;

 ---- I is not accessible after the loop;

[scope of I is just the for loop]
For loop of Algol 68:

For I from E1 by E2 to E3 while E4

[E1: initial value; E2: step size; E3: final value; E4: terminating expression]

Do

C

Od

Scope of I is E4&C. 25 =32 different loops in one.
---For I is optional; (default i=1)

---From E1 is optional; (default E1=1)
---by E2 is optional; (default E2=1)

---to E3 is optional; (default E3 is infinite)

---while E4 is optional; (default E4 is infinite)

Semantics of iterations
While E do C -> translating:
 begin 1: if E then NOT Satisfactory!

 Begin C;

Immediate constituents of while

 Goto 1;

 End

 End

Denotational
syntax-semantics directed

C0 while 0<1

impossible infinite loop

Do {null }
