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Abstract. This paper proves the undecidability of an open problem
on the complexity of checking secrecy of cryptographic protocols due to
Durgin, Lincoln and Mitchell. The proof is by a reduction from 2-counter
machines to protocols, and we prove both directions of the reduction in
detail. The modeling and proof method are generally applicable and can
be conveniently adapted to solve other problems about the complexity
analysis of checking properties of protocols.
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1 Introduction

Analyzing the security properties of cryptographic protocols has been one of the
most important challenges nowadays when networks are ubiquitous. A signif-
icant research direction in this area is to check secrecy and authentication of
the protocols against a Dolev-Yao attacker [1] assuming that the cryptographic
algorithms cannot be broken. Since Lowe discovered an attack on the public
key Needham-Schroeder protocol [2,3] 17 years after it was published [4], many
papers have been published on this topic. To check secrecy failure or correctness
is a very hard problem. One bound on the complexity of secrecy problem is that
when the number of role instances in the protocol run is bounded, the secrecy
problem is NP-complete [5], even when composite keys are allowed [6].

Secrecy checking is undecidable assuming unbounded number of role in-
stances in a protocol run (together with other specific assumptions). Undecid-
ability of secrecy checking is mentioned by several papers [7] [8] [9] [10] [11]
[12] [13] [14], and [9] [10] [11] [13] provide proofs with details. The survey paper
[14] is partly motivated by the work of [13] and partly to clarify the sketched
proof in [10] on showing undecidability of secrecy by reduction from PCS (Post
Correspondence Problem).

In [11] and [10] the authors use MSR (multi-set rewriting) to analyze proto-
cols. In these papers the focus is on bounding the symbolic size of each message
instance that can appear in a run of the protocol, and the number of messages in
every role of the protocol is bounded. When the total number of distinct nonce
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instances that can be generated by regular principal instances is unbounded,
and the symbolic message size of all messages instances are bounded by a num-
ber, secrecy verification is undecidable. The proof is by a two-stage reduction
from the halting problem of a Turing machine with the style of Turing machine
tableau to Horn clause theories without function symbols and then from Horn
clause theory to protocols specified as a set of roles. When the attacker can
generate unbounded number of nonces and the regular agents can record nonces
and check the uniqueness of each received nonce in a run, and a run can have
unbounded number of role instances, the complexity of checking secrecy is an
open problem [10] [11]. The open problem is stated precisely in theorem 1.

In [13] the authors show that the undecidability result of [10] can be proved
more directly by a reduction from the reachability problem of a 2-counter ma-
chine to the secrecy checking problem of a protocol as a set of roles (we call
the protocol role-oriented). In addition, by replacing unique nonces with unique
composite terms, [13] proved the undecidability of secrecy checking when the
symbolic size of message instances are unbounded, while the nonce instances
generated in the run are bounded (in fact, no nonce generation is required).

In a recently published paper [15], Froschle showed the NEXPTIME-complete
complexity of the secrecy problem of a setting (problem 4 of [15]) where dise-
quality tests are allowed and only bounded number of nonce can be used (can
appear) in role instances (called sessions in [15]) executed by regular agents. The
motivation to consider disequality tests is that the unbounded set of nonces may
not be able to be reduced in a bounded set of terms trivially due to the enforce-
ment of disequality tests. Although inn [15] the author mentioned that problem
4 is pinpointed out by [10], it does not match the description of the open problem
of [10] quoted in the appendix of this paper for two reasons. First, the disequality
tests in problem 4 can only apply to terms occurring in the same role instance,
while the ‘disequality test’ in the open problem are used by an agent trying to
enforce freshnessof a term and should be applied to terms recorded across dif-
ferent role instances. Second and more importantly, the open problem does not
assume that “the number of fresh data used in honest sessions is bounded” as
in problem 4. The notation of “bounded ∃” in [10] means bounded number of
nonces are generated, not that bounded number of nonces that can be used. This
assumption will make the open problem obviously decidable. Since the messages
size are bounded in a run, and assuming agent names and terms other than
nonce are bounded, although unbounded number of role instances are allowed,
only bounded many distinct role instances (with different messages) will appear
in the run. So problem 4 is reduced to a setting with bounded number of role
instances (note that we only need to consider role instances executed by regular
agents), independent to disequality tests allowed or not, a decidable situation.
Note that the authors of [10] conjectured that the open problem is undecidable
(page 71 of [11]).

The concept of freshness check of [14] is an assumption that in any where a
nonce is received by a regular agent when it should be freshly generated according
to the protocol it must be indeed fresh, that is, different from any terms (sub-
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terms) appeared so far in a run. One difference between the freshness check and
consideration of the open problem is that freshness check is at the assumption
level where how to implement it is unclear, where the open problem considers the
internal operations of agents trying to ensure freshness. The second difference is
that freshness check is global to all terms appeared so far in a run, where the
uniqueness checks (which should be proper for the open problem) in this paper
only ensure freshness local to individual agents. Recording terms in the memory
of individual agents seems to be the only way to implement freshness check. The
third difference is that freshness check of [14] ensures a nonce different from any
subterms appeared so far in a run, where the open problem only require the
uniqueness of a nonce among all nonces. Our proof, which considers uniqueness
check described later, can easily be adapted to show the undecidability in the
corresponding setting where ‘freshness check’ of [14]is assumed. To prove this,
the adjustment to our proof is to design a protocol such that every message must
go through a special server s, who records every subterm appeared so far in the
run. This setting may have been mentioned in [16] but has been pointed out
having an error in the undecidability proof by Froschle in [15], if [15] is right on
the issue.

Two factors are crucial for us to solve the open problem. First, we model the
problem carefully and second, we utilize an improved and more direct reduction
scheme, from 2-counter machines to security protocols. We give a rigorous and
complete proof of correctness of the reduction. Our scheme is also applicable
beyond the open problem. Our reduction scheme using 2-counter machine is
inspired from [13]. However there are key differences. The paper [13] dealt with
different problems, not the open problem. Because of the constraints of the
open problem, we cannot use their scheme directly and need new ideas such as
stamping nonces with agent id’s. Moreover, we have found and fixed two errors
in the reduction of [13]: a counter can be negative, and zero can be used as a
positive number. Details of the errors and our fixes are included in Appendix
D. The proof of correctness of the reduction in [13] is sketchy and consequently
misses the two errors.

2 Notations and Modeling

We introduce our notations and modeling here. A more detailed description of
them can be found at [17]. Notations are chosen in a style that is commonly
used in the literature, e.g., [2]. The notations for asymmetric keys are new.

A term is either an atomic term or a composite term. An atomic term is a
variable (represented by a symbol with at least one upper case letter), and a
constant (a symbol without any upper case letter). A special constant is I , the
name of the attacker. Asymmetric keys are atomic terms. A pair of asymmetric
keys is represented as k1

X and k0
X . X is the unique ID (UID) of the asymmetric

key pair. When X is the name of an agent, k0
X and k1

X represent the established
private key and public key of the agent X , respectively. This notation can also
be adapted to describe the asymmetric keys generated during a run. A composite
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term is a list, or an asymmetric encryption, or a symmetric encryption. A list
has the form of [X, Y, · · · ], where X and Y are terms and the list contains
finite number of member terms. A list is a simpler representation of a sequence
of nested pairs. For example [W, X, Y, Z] is the same as [W, [X, [Y, Z]]]. When a
message is a list, the top level enclosing [ ] is omitted. An asymmetric encryption,
has the form of {T}→

ki
A

, i ∈ {0, 1}, where T is the encrypted term, and ki
A is the

atomic encryption key, and it can be decrypted using the key k1−i
A . A symmetric

encryption has the form of {T}↔Y , where T is the encrypted term and Y is
term working as the encryption key (Y could be a composite term). For both
asymmetric or symmetric encryption, when a list, say [X, Y, Z, · · · ] is encrypted,
the enclosing square brackets are removed from within “{ }”. The word ground
means variable free. A message is a term. Every message appearing in a run of
a protocol is a ground term.

The attacker model is, as usual, the Dolev-Yao model [1]. There are different
equivalent formalizations for the Dolev-Yao model, such as (not a comprehensive
list) Paulson’s [18], Multiset Rewriting (MSR) [10], Constraint Solving [19], and
Strand Space [20]. Our model is somewhat similar to Paulson’s [18] where a
run is represented as a trace which is convenient for proofs based on induction.
We will clarify the unique features of our model, which are needed for the open
problem.

A clear consensus of modeling can be described as follows. A protocol can
be described as a set of roles, each role is a sequence of actions steps of message
sending or receiving executed by an agent. A run E is a sequence of actions
steps formed by interleaving (prefixes of) role instances (called strands in [20])
executed by regular agents, where before every message Msg can be received
by a regular agent after at a certain point of the run, say after E ′ which is a
prefix of E, the attacker I must be able to construct Msg, or Msg ∈ knowI (E

′).
Here knowI(E

′) represents the knowledge of the attacker built from a set well-
known analysis and synthesis rules [18] on the messages appeared in E ′ and
the attacker’s initial knowledge initI . The secrecy checking protocol is to check
if a secret term Sec can be leaked, or Sec ∈ knowI(E) after a run E of the
protocol. The formal proof of our reduction is based on the formal definitions
of a protocol run and knowI(E), and should be independent to different but
equivalent choices to define them. A reader familiar with the formal concepts of
protocol run and attacker’s knowledge can directly verify the correctness of the
proof assuming their own definitions of run and knowI(E).

In the reduction proofs of undecidability of published papers such as [9] [10]
[13] [14] and NP-hardness [5] [6], a constructed protocol is presented directly as
a set of roles, we call them role-oriented (RO) protocols. However we call these
protocols non-matching, since they do not correspond to protocols in the form
of a sequence of message exchanges, such as those in [21]. For compatibility with
other papers and especially with [11] and [10], which describe the open problem,
in this paper a protocol presented is RO and non-matching.

An agent is a tuple [name, init, mem], where name is its unique name, init
is its initial knowledge (a set of terms), and mem is the set of terms that it
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has remembered so far in the current protocol run. The mem field is essential
to explain the open problem. The different patterns of the initial knowledge of
agents will be defined in the protocol. Regular agents means honest agents.

An action can be an internal action or an external action . Let P , A,
and B be agent names. The internal action of fresh term generation is denoted
as #P (t1, t2, · · · ), where t1, t2, · · · represent the fresh terms like nonces (they
should be different from all other terms appeared in the run so far) generated by
agent P before P sends a message that contains these fresh terms. An external
action can be a message sending or a message receiving. The action of agent
A to send a message Msg, when the intended receiver is B, A 6= B is denoted
as +(A ⇒ B) : Msg. The action of agent A to receive a message Msg from
a supposed sender B, A 6= B is denoted as −(B ⇒ A) : Msg. Some internal
action can be implicitly described by the protocol code, such as equivalence
checking for the values of the same term. However, some other internal actions
cannot be expressed implicitly. In this paper, the only kind of internal actions
explicitly expressed in the action code are the fresh term generations. Some other
internal actions, such as disequality check of terms, when they are required to
be expressed, such as those required by the open problem, are described in the
conditions of a specific role of the protocol.

An action step is a sequence of actions. It has four forms. 1) #I (term1,
term2,· · · ); 2) +(A ⇒ B) : Msg; 3) −(B ⇒ A) : Msg; 4) #A(t1, t2, · · · )
+(A ⇒ B) : Msg; 1) is executed by I , while other three can be executed by
both a regualar agent or I . 4) is the only kind of action step that is a sequence
of more than one action.

A role or role template or a role type, is a tuple [RID, agent, vars, acts,
conds], where RID is the UID of the role, which is a constant, agent is the the
agent who will execute the role template, vars is the set of variables that appear
in acts or conds (the other atomic terms appearing in the role are constants),
acts is the sequence of action steps numbered sequentially starting from 1, and
conds is the internal actions that are not implicitly expressible by the acts.
The notation n.pre : (cond1, cond2, · · · ) represents the conditions that should
be checked and satisfied before the nth action step (before accepting a received
message, or before sending a message) is executed, where n is an action step
number. The statement n.post : (cond1, cond2, · · · ) describes the conditions that
are enforced to be satisfied after the nth action step is executed to update the
properties of agents. Especially, when a condition X ∈ Q is included in n.pre,
it means to check term X is in set Q before the nth action step. Q should be
defined in the context of the protocol or the role. If X ∈ Q appears in n.post it
means to insert term X into set Q after the nth action step.

A role instance is a tuple [agent, role, vmap, acts], where agent is the agent
who executes the role instance, role is the role template for this role instance,
vmap is a ground substitution, (note thatvmap(role.conds) should be satisfied),
and acts is the sequence of (ground) action steps, and acts = vmap(role.acts).

A protocol Pro is a tuple [PID, roles, AN, rsts], where PID is the UID
of the protocol (a constant), roles is a set of role templates, AN is the set of
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agent names (insiders) which are to be instantiated in the setting of a run, rsts
is the restrictions describing the initial knowledge and initial memory (indicated
as meminitial) of the agents, and definitions of some related sets if needed, such
as the a set of terms shared by a certain group of agents.

A Dolev-Yao attacker [1], or an attacker for short, is a tuple [name,
initI , knowI ], where by convention name = I , initI is the initial knowledge
of the attacker, and knowI is a function. After a sequence E of action steps
has been executed, knowI(E) is the set of terms that the attacker can obtain.
knowI(E) is calculated as the closure of a applying a set of well-known rules of
term synthesis and analysis as showed in [18]. Details of these rules are presented
in [17].

A run is a tuple [Pro, D, R, AN, E, conds], where Pro is the protocol, D
is the initial knowledge pattern of the specific Dolev-Yao attacker, R is a set of
role instances that are executed honestly by regular agents, AN is the names of
the agents who can legally participate in a run (AN instantiates Pro.AN), E is
a sequence of actions steps, which is called a trace in Paulson’s model [18], and
conds is the set conditions required for a run of the protocol. conds includes the
following conditions
1) Pro.rsts should be satisfied. That is, the initial knowledge of every agent in
AN are assigned with a set of ground terms according to Pro.rsts
2) For each role instance prefix r in R, r.agent.name ∈ AN , and r.agent.name 6=
I , The action steps of r.acts are included in run.E preserving the relative order.
3) For each X ∈ E executed by some regular agent, X ∈ r.acts, for some r ∈ R.
4) Each agent with its name included in AN is called an insider . Especially, if
I ∈ AN then I is an insider attacker , then I ’s initial knowledge patter should
be the same as (some) other regular agents as specified by Pro.rsts. Otherwise if
I /∈ AN , I is an outsider , and then we assume the attacker’s initial knowledge
pattern D will instantiate I.init by a set of ground terms that is a subset of the
initial knowledge of every regular agent (insiders), usually only the agent names
and public keys of the regular agents and some constants that is known to every
agent.
5) Let W � X represent a sequence formed by appending an element X to a
sequence W . For a prefix of E, call it E ′ and it is a sequence of action steps,
suppose E′ = W � X , X ∈ r.acts for some r ∈ R. If X = −(A ⇒ B)msg, where
B is the name of a regular agent , then msg ∈ knowI(W ).
6) For a fresh term X that is generated by I , the action #I(M) where M is a
list of terms including X , is explicitly included in run.E before X can appear
in any message receiving action step by a regular agent.

We present some explanations of the above conditions to define a run. For 2),
only the behavior of regular agents are organized into role instances. Although
the attacker can execute a role instance normally as a regular agents, its behavior
are covered by the Dolev-Yao model, and we only need to care about condition
5), that is, I can obtain every message before it can be received by a regular
agent. For 4) we assume an outsider’s initial knowledge should be less than any
insider. Condition 6) is included for the convenience of describing knownI(E),
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since the term generated by I should be used to build the knowledge of I . Note
that we do not need to explicitly record the message sending actions of the
attacker.

We assume every run has an implicit stage to distribute keys and establish
the initial knowledge of agents.

The set of all possible runs of a protocol Pro, with a specific initial knowledge
pattern D of the attacker, is indicated as runsD:Pro. Given a protocol Pro, and
a set of secret terms SEC, A secrecy problem is to check the validity of the
following statement.

∃run, ∃X, run ∈ runsD:Pro, X ∈ SEC : X ∈ knowI (run.E)

3 Solution of the Open Problem

In this section, we present the solution to the open problem. We are considering
the lower bound of complexity. In other words, we show that given a set of
conditions, in the worst case the problem is undecidable, and the theme is not
relevant to the special cases that secrecy problems are decidable.

The open problem is described in [10] and [11], and is precisely stated in
Theorem 1. Appendix C discusses it in more detail.

The protocols considered by [10] are bounded, which means two bounds.
First, the number of messages in a role template (and also in a role instance),
called the role length, is bounded. Second, the size of a message instance (the
number of ground atomic terms appearing in a message, which is a term) that
can appear in a run of the protocol is bounded. In other words, only the runs
with bounded size of message instances are considered.

Note that, in the scenario of the open problem, nonce generations depend
on the attacker, and the attacker can always use a composite term as a nonce.
So type flaw is not avoidable. Note that in the proof we allow Ch and C−1

h to
be instantiated by a pair, where h ∈ {1, 2}. However, if we make a stronger
requirement so that the open problem only considers runs of a protocol where
no type flaw can occur, which means every variable can only be instantiated by
an atomic term in a run considered, it is still undecidable. To prove this, we
only need to adjust the protocol code in the proof and replace Ch and C−1

h with
pairs like [A, Ch] and [B, C−1

h ], and then encode 0 with a pair [A, z] instead z,
and then adjust the messages of the protocol accordingly. The rest of the proof
is the same.

We need to ensure that a 2-counter machine can reach its final state if and
only if there is a run of the corresponding protocol (constructed from the 2-
counter machine) in which the secret term is leaked.

Definition 1. A deterministic 2-counter machine [22] with empty input
is a pair (Q, δ), where Q is a set of states including the starting state q0 and
the accepting state qfinal and δ is a set of transition rules. A configuration of
a 2-counter machine is a tuple (q, C1, C2), where q is the current state and
C1 and C2 are two non-negative integers representing the two counters. The 2-
counter machine can detect whether a counter is 0 or not. A transition rule,
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(call the rule T ∈ δ) is of the form [q, i1, i2] → [q′, j1, j2], where q, q′ ∈ Q;
i1, i2 ∈ {0, 1}; j1, j2 ∈ {−1, 0, +1}. An application of T can be described as
(q, C1, C2) −→T (q′, C ′

1, C
′
2), where LHS and RHS are the configuration before

and after the transition respectively. For h ∈ 1, 2, when ih = 0, it means that
Ch = 0. When ih = 1, it means that Ch > 0. When jh = +1 (jh = 0, jh = −1),
it means that after the transition, C ′

h = Ch + 1 (C ′
h = Ch, C ′

h = Ch − 1).
Especially, when jh = −1, ih must be 1, since decrementing 0 is not allowed. The
reachability problem of such a 2-counter machine is to decide that, starting from
the initial configuration (q0, 0, 0), after applying some applicable transition rules,
whether some final configuration (qfinal, , ) can be reached, where represents
an arbitrary possible value. We assume (for convenience) that q0 6= qfinal and,
for nontriviality, that δ is not empty.

It is obvious that a 2-counter machine allowing q0 = qfinal can be equivalently
simulated by a 2-counter machine defined above, and the reachability problem
of 2-counter machines defined above is undecidable.

Theorem 1. The open problem of [10] is undecidable. Specifically, checking se-
crecy is undecidable, assuming: (i) the protocol has bounded number of messages
in a role (role length), (ii) considering only the runs where the sizes of messages
are bounded, (iii) the number of role instances in a run of the protocol is un-
bounded, (iv) regular agents can generate only bounded number of nonces, (v)
the attacker can generate unbounded many nonces, (vi) the internal action of
disequality test on two terms is allowed, (vii) considering only the runs where
the number of agents is bounded, and (viii) when a term is supposed to be freshly
generated nonce and is received by some regular agent, who records every nonce
encountered, it must be different from all other terms the agent has recorded so
far in the run, and then it is recorded by the agent.

Proof. We translate an arbitrary 2-counter machine into a protocol which fits in
the scenario of the open problem. Every role has a different scope of variables. So
a variable in role is independent of the variable with the same name in another
role.

Given a 2-counter machine M = (Q, δ), let Q = {q0, qfinal, q1, q2, · · · , qm}
and δ = {T1, T2, · · · , Tn}. The following is the description of the protocol Pro
constructed according to M .

The messages received in a role is in the format of: sender, receiver, receiver′s
role, · · · , so the receiver of the message has clear hints to understand the message
and know what he should do. The variables B, Afinal, A0, Af , for 1 ≤ f ≤ n
are agent names. We differentiate the namess of the variables representing the
executors of different roles, including Afinal, A0, Af , 1 ≤ f ≤ n, for the clarity
of the presentation, although a single variable can be used in different roles. B
represents some agent talking with the executor of every role.

The set of secret term SEC is defined in Pro.rsts, which is initially known
by every regular agent but the attacker. We specify the secret term Sec as a
variable, instead of constant in the messages of a role, for a practical concern, so
even though the attacker knows the protocol code, the attacker does not know
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the instance of Sec unless a role instance of Rfinal can be executed in a run,
where Sec will be instantiated by a member of SEC.

In a role executed by an agent A, for the variables whose values are not
determined by the agents other than A, we can categorize these variables in
three kinds depending on A’s different treatment to them. 1) The set of terms
which A must check that they belong to the A.init, such as the agent names. 2)
The set of terms which A does not care about whether A has seen them already
or not, such as Ch and C−1

h , no matter they should be nonces or not. 3) The set
of terms which A must check its uniqueness (where the disequality 6= applies),
i.e., A has never seen it before, such as C+1

h . We will adapt the proof to show in
theorem 2 that when the variables of kind 2) are not allowed, the open problem
is still undecidable.

Pro = [PID, roles, AN, pk, gk, rsts]. PID is arbitrary. roles =
{R0, Rfinal, R1, R2, · · · , Rn}.

– R0 = [RID, agent, vars, acts, conds]
• RID = r0; agent = [name, init, mem]; vars ={A0, B}
• acts = 1. + (A0 ⇒ B) : A0, B, {q0, z, z}→

k0
g1

• conds = { 1.pre : (q0, A0, r0, B, k0
g1} ⊆ init, agent.name = A0, {A0, B} ⊂

AN, A0 6= B) }

– Rfinal = [RID, agent, vars, acts, conds]
• RID = rfinal; agent = [name, init, mem]; vars = {Afinal, X, Y, B,

Sec}.
• acts=1. − (B ⇒ Afinal) : B, Afinal, rfinal, {qfinal, X, Y }→

k0
g1

2. + (Afinal ⇒ B) : Afinal, B, Sec

• conds =1.pre : ({qfinal, Afinal, rfinal, B, k1
g1} ⊆ init,

agent.name = Afinal, {Afinal, B} ⊂ AN, Afinal 6= B) );
2.pre : ( Sec ∈ init, Sec ∈ SEC ) }

– For each Tf ∈ δ, for some f , 1 ≤ f ≤ n, suppose Tf = [q, i1, i2] → [q′, j1, j2].
Rf ∈ roles. Rf can be constructed according to Tf by the following descrip-
tion. Rf = [RID, agent, vars, acts, conds].
• RID = rf . agent = [name, init, mem]. vars = {Af , B, C1, C2, C

−1

1 ,
C+1

1 , C−1

2 , C+1

2 }.
• acts: The following is the template of acts. The exact action sequence

of each Rf will be adjusted by the specific Tf and a set of rewrite rules.
Note that q, q′, i1, i2, j1, j2 may represent different constants for different
f , according to the 2-counter machine specification. The variables C ′

1

and C ′
2, which represent the new counter values, will only be used in the

template and they will not appear in the actual code of the Rf , since
they will be replaced by other terms after applying the rewrite rules.
1. −(B ⇒ Af ) : B, Af , rf , {q, C1, C2}→k0

g1

, {C−1

1 , C1}→k0
g2

,

{C−1
2 , C2}→k0

g2

, C+1
1 , C+1

2

2. +(Af ⇒ B) : Af , B, {q′, C ′
1, C

′
2}

→
k0

g1

, {C1, [Af , C+1
1 ]}→

k0
g2

,

{C2, [Af , C+1
2 ]}→

k0
g2
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For h ∈ {1, 2}, the following rewrite rules are applied to adjust the above role
template to make each individual transition role Rf according to the conditions
satisfied by the corresponding transition rule Tf of the 2-counter machine. Each
rewrite rule is described as “condition Z⇒ effects”.
1. ih = 0 Z⇒ Ch � z; {C−1

h , Ch}→k0
g2

� ε

2. ih = 1 Z⇒ {C−1

h , Ch}→k0
g2

∈ Msg1

3. jh = +1 Z⇒ C ′
h � [Af , C+1

h ]; C+1

h ∈ Msg1; {Ch, [Af , C+1

h ]}k0
g2

∈ Msg2

4. jh = 0 Z⇒ C ′
h � Ch; {Ch, [Af , C+1

h ]}→
k0

g2

� ε; In Msg1 C+1

h � ε

5. jh = −1 Z⇒ C ′
h � C−1

h ; {Ch, [Af , C+1

h ]}→
k0

g2

� ε; In Msg1 C+1

h � ε

W � V means to replace W with V in the above action code template of Rf .
W � ε means to remove W . W ∈ Msg1 means the assertion that the term
W will appear in message 1. An implicit rule is that any term in the template
of Rf .acts which is not removed or changed will still appear in the code. We
emphasize that a term will appear in a message in some rule, even without
explicitly saying so, the fact should still hold. If in Rf some variables will not
appear in the actions since they will be removed by applying the rules, then these
variables will also be removed from other fields such as Rf .vars and Rf .conds.
If a rule is only applied to Msg1, it is labeled with “in Msg1”. h ∈ {1, 2}. Here
is the explanation of the above rules.

1. Counter value 0 must be represented by z. There is no previous value for
counter value 0 so no “number connection” term {C−1

h , Ch}→k0
g2

is required

in the role.
2. When a counter is positive, we emphasize that there must be evidence that

it has a preceding nonnegative value. This rule is redundant since a default
rule is that any term that is not removed from the template will still be
there.

3. When a counter is incremented, the variable C ′
h is replaced by a new pair

[Af , C+1

h ], where C+1

h is new nonce received by Af . Note that in a run C+1

h

is provided by the intruder who impersonates Bf . The history records that
the new counter value is incremented from its precedent is represented by
the term {Ch, [Af , C+1

h ]}→
k0

g2

.

4. When a counter is kept the same, neither the new nonce nor the record of
increment is needed.

5. When a counter is decremented, the variable C ′
h is replaced by the preceding

counter representation. The new nonce and the record of incremented counter
are not needed. When jh = −1, ih must be 1 (and rule 2 applies) if Tf is a
valid transition rule of M .

The rewrite rules are applied as much as possible. For example, when ih = 0
and jh = 0, rule 4 is applied to change C ′

h to Ch, and then rule 1 is applied to
change Ch to z. In the rules 4 and 5, the label “In Msg1” is to make sure that
after C+1

h � ε is applied, {Ch, [Af , C+1

h ]}→
k0

g2

� ε is still applicable to Msg2. So

the order of rule application is not relevant. Appendix D shows some examples.

The conditions of Rf (Rf .cond), 1 ≤ f ≤ n, is the follows.
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– conds = { 1.pre : ( C+1
1 6= C+1

2 , C+1
1 /∈ mem, C+1

2 /∈ mem,
agent.name = Af {B, Af , rf , q, k1

g1, k
1
g2} ⊂ init,

{Af , B} ⊂ AN, Af 6= B );
1.post : ( {C+1

1 , C+1

2 } ⊆ mem ); 2.pre : ( {k0
g1, k

0
g2} ⊂ init ); }

We continue to finish describing remaining fields of Pro.
* AN are to be instantiated in a run of Pro.
* pk and gk will be instantiated in a run of Pro according to Pro.rsts.
* rsts = { pk = Q∪AN ∪{r0, rfinal, r1, · · · , rn}∪{z, k1

g1, k
1
g2}; Let SEC

be a set of terms. SEC ∩ pk = {}; gk = {k0
g1, k

0
g2} ∪ SEC; ∀P (P ∈ CA) :

P.init = pk ∪ gk, P.meminitial = P.init }

The initial knowledge pattern D of I ’s initial knowledge (as an ousider) is:
init.I = pk, where pk is defined in Pro.conds.

We show that the constructed protocol and the proof satisfies the bounds
imposed by the open problem, before we show further details of the reduction.
Note that no regular agent will generate any fresh nonce, so the nonces generated
from regular agents are trivially bounded. All of the nonces, which instantiate
C+1

h , h ∈ {1, 2}, in every role instance of Rf , are unbounded many, can only
be generated from the attacker I . Every role has at most two action steps, so
the role length is bounded by two. The message size in a run is bounded by any
number equal to or greater than 15, the size of the first message of Rf , for some
f , 1 ≤ f ≤ n. And every regular agent is required to do the uniqueness check
of each term received that is supposed to be fresh nonce. The number of agents
can be bounded by three, since in the proof (direction 1) we only assume two
regular agents a and b in a run, while the intruder I is the third agent in a run.

As explained in the introduction section, the protocol is a non-matching role
oriented one. The attacker is an outsider as described by the following paragraph.

A symmetric key is used as the encryption key in [13] [10] [6], which is
known to all the regular agents (who are insiders) but unknown to the attacker
(who is an outsider). So the attacker can neither construct an encryption, nor
understand it, which could make it not practical for attacker to deploy an attack.
In the proof of this paper we also consider the attacker is an outsider and we
choose asymmetric keys k0

g1 and k0
g2 as the encryption keys, which are unknown

to the attacker, but known to all of the regular agents. g1 and g2 are the UID
of the key pairs, not agent names. The attacker I knows the decryption key
k1

g1 and k1
g2. So I cannot construct the encryptions, but can decrypt them and

understand them, and easily deploy the attack. Every role can only be executed
by some regular agent since attacker cannot construct the encryptions in the
messages.

Before we prove the correctness of the reduction, we explain the intuition. If
M can reach a final configuration (qfinal, , ) starting from (q0, 0, 0), then there
is a finite sequence of configurations connected by applicable rules in δ. Call this
computation of M , Comp, which can be written as

(q0, 0, 0) −→t1 (Q1, V 1
1 , V 1

2 ) · · · (Qw, V w
1 , V w

2 ) −→tw+1 (Qw+1, V w+1
1 , V w+1

2 )
· · · −→tu (qfinal, V

u
1 , V u

2 )
where w, u > 0, t0, tw, tu ∈ δ, and u is the number of transitions in Comp.
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After running a sequence of action steps E, we say a term X is the encoding

of a positive integer N , if and only if there is a sequence of terms:
{z, X1}

→
k0

g2

, {X1, X2}
→
k0

g2

, {X2, X3}
→
k0

g2

, · · · , {XN−2, XN−1}
→
k0

g2

, {XN−1, X}→
k0

g2

such that for each element T of this sequence T ∈ knowI (E). Here X and Xl,
for some integer l, 1 ≤ l ≤ N − 1, are different variables that can represent any
terms (could be composite terms). We call N the i value of X (i stands for
integer), or X is the encoding of N , denoted as N = X . We say X encodes N .
The above term sequence is called the encoding sequence of X . The encoding
sequence of z is z.

The encoding of 0 is the special constant z. So 0 = z. A positive integer
is encoded by a pair [A, X ], where A is an agent name and X is a nonce. The
encodings of numbers are connected in an encryption to show the consecutive
order between numbers. {X, Y }→

k0
g2

means that X = Y − 1.

For the E of a run, let E = W �X . We will show that if the last action setp
X of E is to receive a message Msg, we will show that Msg ∈ knowI(W ).

Direction 1 : Suppose M can reach a final configuration (qfinal, , ) from
the initial configuration, we prove that there is a run, call it run, such that
Sec ∈ knowI(run.E) for some term Sec ∈ SEC. We prove this direction by
constructing run. Pro is the protocol just described.

run = [Pro, D, R, AN, E, conds]

– Pro = [PID, roles, agents, AN, pk, gk, conds]. Especially, the instantiation
of pk will be clear once AN is specified.

– D is the pattern which requires that initI = Pro.pk.
– R: A role instance r will obviously be included in R when some actions of r

will be included in E when we show the proof.
– AN = {a, b}. Only two agents are enough here to instantiate the sender and

receiver variables in each role.
– E: The action sequence is described below.
– conds: SEC is instantiated by {sec}. So sec is the only secret ground term.

we will justify that is every message received by a regular agent can be
constructed by the attacker.

Now we focus on describing run.E, which can be divided into three parts: the
starting, the transition, and the finishing. We build run.E by appending actions
to run.E, starting from an empty sequence.

We need to prove that the constructed run is a run, we only have to show two
things. First, given a role instance r (executed by a regular agent) of the run,
the internal actions and conditions described by r.role.conds should be satisfied.
Particularly, all the instantiation of nonce variables should pass the uniqueness
checking by the agent who executes the role instance. This is obvious since in
the run all nonce variables are instantiated by nonces freshly honestly generated
by the attacker, who can generate unbounded many fresh nonces and has no
problem to do it.

Second, we need to show that if a message msg is received by in a regular role
instance r, say at the end of an action sequence E, then msg ∈ knowI (E

−1). We
only need to explain this aspect. A regular agent will receive a message either in
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a role instance of Rserver or of a Rf , 1 ≤ f ≤ n, or of Rfinal. We will show that
this condition is satisfied when we add an action of message receiving to run.E.

The starting action steps . At the beginning of run.E, we choose a role
instance of R0, call it r0, which means that r0 ∈ run.R, r0.agent.name = A0.
A0 is instantiated by a B is instantiated by b. The first action of run.E is:
+(A0 ⇒ s) : A0, B, {q0, z, z}→

k0
g1

.

The transition action steps . Suppose wth step in Comp is (q, V1, V2) −→
t

(q′, V ′
1 , V ′

2), where 0 ≤ w ≤ u, and t ∈ δ. If according to t, j1 = +1 or j2 = +1,
which means that V1 + 1 = V ′

1 or V2 + 1 = V ′
2 , the following action of nonces

generation by I is appended to run.E: #I(c
w
1 , cw

2 ), where cw
1 and cw

2 are two
fresh nonces. Otherwise, this action is not appended to run.E.

The transition rule t corresponds to a transition role in the protocol, say Rf ,
where 1 ≤ f ≤ n, and Rf ∈ Pro.roles. A role instance of Rf is included in the
run for the wth transition of the 2-counter machine, call it rw . Then rw ∈ run.R,
rw .role = Rf . The 2 actions of rw are appended to run.E. According to pro,
the two actions have the following general form.
−(B ⇒ Af ) : B, Af , rf , {q, C1, C2}→k0

g1

,{C−1
1 , C1}→k0

g2

, {C−1
2 , C2}→k0

g2

, C+1
1 , C+1

2

+(Af ⇒ B) : Af , B, {q′, C ′
1, C

′
2}

→
k0

g1

, {C1, [Af , C+1
1 ]}→

k0
g2

, {C2, [Af , C+1
2 ]}→

k0
g2

We have to specify for each variable in Rf its ground instantiation term. Af

and B are instantiated by a and b respectively. I impersonates B to send the
first message to Af . C+1

h is instantiated by cw
h , which is just freshly generated

by I , for h ∈ {1, 2}. Now the variables in the above message template remaining
to be instantiated in rw are Ch, and C−1

h , with h ∈ {1, 2}. We do not need to
specify C ′

h, since it will be replaced by one of C−1

h , Ch, or C+1

h depending on
the specific role Rf .

Let Ew be the prefix of run.E which ends immediately before the first action
of rw . We require that the instantiation of Ch must encode Vh, denoted as
Vh = Ch, for h ∈ {1, 2}, after running Ew. q and q′ are the same as the state
names appearing in t. Intuitively speaking, we require {q, C1, C2}→k0

g1

to encode

the configuration (q, V1, V2). If C−1

h will appear in rw, we require that C−1

h

encodes Vh − 1.

Let Msgw be the message received by the first action of rw. Now we need
to show that Msgw ∈ knowI(E

w). If [Af , C+1

h ] appears in Msgw, then by the
design of the protocol, it must be true that in the transition t of the 2-counter
machine, jh = +1. Then by the construction of the run, cw

h is just freshly gener-
ated by I . So C+1

h , which is instantiated by cw
h is in knowI(E

w). Af is initially
known by I . So [Af , C+1

h ] ∈ knowI(E
w), for h ∈ {1, 2}. we only need to jus-

tify that the required terms {q, C1, C2}→k0
g1

, and {C−1

h , Ch}→k0
g2

( if it appears in

Msgw), are included in knowI (E
w).

We prove this by showing a stronger result below. It is obvious that if Lemma
1 is proven, then Msgw ∈ knowI (E

w) is justified.

Lemma 1. For the role instance rw and the transition steps of M just described,
the following three facts are true.
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1. There exists {q, C1, C2}→k0
g1

∈ knowI (E
w), such that V1 = C1 and V2 = C2.

2. For h ∈ {1, 2}, if Vh > 0, then {C−1

h , Ch}
→
k0

g2

∈ knowI (E
w), such that after

running Ew, Vh − 1 = C−1

h .
3. After running the two action steps of rw, we call the executed action se-

quence so far Ew′

. For Ew′

, V ′
h = C ′

h, for h ∈ {1, 2}. And {q′, C ′
1, C

′
2}

→
k0

g1

∈

knowI (E
w′

).

This lemma can be proven by induction on the length of the computation of
M . The details are included in Appendix A.

The finishing action steps : A role instance of Rfinal, call it rfinal, is
included in run.R. The following two actions of rfinal are appended to run.E.
−(B ⇒ Afinal) : B, Afinal, rfinal, {qfinal, X, Y }→

k0
g1

; +(Afinal ⇒ B) :

Afinal, B, Sec

Afinal and B are instantiated by a and b respectively. X and Y can be
instantiated by any terms. Sec is instantiated by sec. Let Efinal be the prefix of
run.E that ends immediately before the first action of rfinal. In order to show
that the first message of rfinal ∈ knowI (E

final), we only need to show that
{qfinal, X, Y }→

k0
g1

∈ knowI (E
final), the other terms are included in initI . Since

we assume the 2-counter machine can reach a final configuration (qfinal, , ),
the last transition step must have the form (q, V1, V2) −→t (qfinal, V

′
1 , V ′

2). It is
proven by Lemma 1 that the last transition action (the uth) will produce a term
{qfinal, C

′
1, C

′
2}

→
k0

g1

, where V ′
h = C ′

h, for h ∈ {1, 2}.

It is obvious that at end of run, sec ∈ knowI(E). Direction 1 is proved.

Direction 2 : We have to show for any run, run ∈ RunsD:Pro, if sec ∈
knowI(run.E), then the 2-counter machine M can reach a final configuration
(qfinal, , ).

The following observations are easy to verify. Due to limit of space, detailed
explanation are included in [17].

Observation 1 : First, every encrypted term is constructed by a regular agent.
Second, two encrypted terms appearing in run with different format cannot be
unified and cannot be used interchangeably due to different encryption keys. .

Observation 2 : A term of the form {X, z}→
k0

g2

will never be generated in the

run. If it can be generated, z must be a freshly generated nonce, impossilbe.

Observation 3 : Given any term X , X can appear at most once in a term of
the form {Y, X}→

k0
g2

. Assuming the contrary, we can see that X must have the

form of [A, T ], where T has been accepted by the same agent A as a fresh nonce
twice, impossible.

Observation 4 : For every term X , there can be at most one encoding sequence
of X , and therefore X can only encode at most one number, especially z can
only encode 0. We can see this directly by Observation 3. If X is z, then by
Observation 2, there can only be one encoding sequence of z, which is z itself. For
an encoding sequence of X , if X 6= z, then by the definition of encoding sequence,
there must be a term {Y, X}→

k0
g2

appearing at the end of a encoding sequence of
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X . By Observation 3, the term {Y, X}→
k0

g2

is unique, so the term Y preceding

to X is fixed. By the same reasoning, the term preceding to Y in the same
encoding sequence is also fixed. The same reasoning can be applied recursively
backwards, until the term z, which is the starting point of the encoding sequence,
and it is impossible for z to appear in the middle of the encoding sequence, by
Observation 2. So the encoding sequence of X is unique.

On the other hand, it is possible that there exist two different terms of the
form {X, Y1}→k0

g2

, and {X, Y2}→k0
g2

, where Y1 6= Y2. The reason is that during the

run of the 2-counter machine, a counter can reach a number (encoded by X)
several times, and then incremented multiple times, corresponding to the run of
the protocol, each time a different pair [Af , nonce] is used as the incremented
value. In other words, a number can be encoded by several different terms,
while each term can only encode one number. If we connect the encoding terms
together where X is the parent of Y if there is a term {X, Y }→

k0
g2

appearing in

the run, then we can form a tree, whose top node is z. Every node (a term) of
the tree, can have several children nodes, but can only have one parent node.
Each term can appear at most once as a node in the tree.

Observation 5 : The number 0 can only be encoded by z. By Observation 2,
it is impossible for z to encode any positive number. One concern is that if X
appears in {X, Y }→

k0
g2

where Y encodes 1, and X 6= z, then X could be used as a

term encoding 0. But since 1 is the i value of Y , there must be a term {z, Y }→
k1

g2

by the definition of i value. It is impossible by Observation 3.
We prove direction 2 by proving a stronger result below.

Lemma 2. For an arbitrary run of Pro with the attacker (an outsider, as de-
scribed earlier) for every configuration term of the form {q, C1, C2}→k0

g1

generated

in run (q is any state), it encodes a reachable configuration, say (q, V1, V2), of
the two counter machine M = (Q, δ), in the sense that Vh = Ch, for h ∈ {1, 2}.

This lemma is proven by induction on the sequence of configuration terms
generated in the run. The detailed proof is included in Appendix A.

Now we finish the proof of direction 2. We assume that sec ∈ knowI(run.E).
Then sec must have been sent by a regular agent, since sec /∈ initI . A regular
agent will generate sec only in the second message of a role instance, call if rfinal,
of Rfinal. rfinal needs to receive a term of the form {qfinal, X, Y }→

k0
g1

in its first

message, where X and Y are some arbitrary terms. By Observation 1, and by
free term algebra assumption, {qfinal, X, Y }→

k0
g1

must be a configuration term. By

Lemma 2, {qfinal, X, Y }→
k0

g1

must encode a configuration (qfinal, V1, V2), which

is a reachable configuration to the 2-counter machine. Direction 2 is proved.
To translate a description of a 2-counter machine to the corresponding pro-

tocol Pro can always be done in finite amount of time, since Pro is always
constructed by finitely many symbols. Theorem 1 is proved. ut

The proof can be enhanced to cover a stronger consideration, which could be
a more restricted interpretation of the open problem.
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In the proof of theorem 1, when an agent, say A, receives the first message in
a transition role, A does not check the uniqueness of the variables Ch and C−1

h ,
for h ∈ {1, 2}, neither does A check whether Ch and C−1

h belong to the initial
knowledge of A. Theorem 1 deals with a general consideration such that for the
variables received by A which are not created by A and may not be known by
A initially, A will check the uniqueness of some of them, but will not care about
the others. In other words, uniqueness check by A is allowed but not required.
This situation should be consistent to the description of table 1 in Appendix C.

However we have noticed that in the protocols appearing in the proofs of
[10] [11] where the open problem is mentioned, there are only two types of vari-
ables appearing a protocol run: agent names, which must belong to the initial
knowledge of agents, or the nonces (created by regular agents). A stronger con-
sideration is that an agent A will treat all of the variables, which are not names,
received from other agents uniformly as fresh nonces, i.e., A will always check
their uniqueness, and the variables that A does not care about such as Ch and
C−1

h as in the general consideration of theorem 1 are not allowed. Theorem 2
solves the open problem with the this stronger consideration.

Theorem 2. Suppose for a variable, say X, appearing in a role executed by a
regular agent A, and the value of X is not determined by A (X first appears in the
role in a message received by A), A must do one of the two kinds internal actions
to X upon receiving it as follows. 1) A will make sure that X ∈ A.init, e.g., X is
an agent name.; Or 2) A will check that X /∈ A.mem, e.g., X should be treated
a nonce freshly generated by some agent other than A. With this consideration
the open problem described in theorem 1 is still undecidable.

The proof of Theorem 2 is based on the proof of Theorem 1. The detailed
proof is included in Appendix B. The idea is to create fresh copies of nonces which
can encode counter values already reached in the computation, and then generate
fresh copies of produced configuration terms where the terms encoding counter
values are replaced by fresh and equivalent (in terms of number encoding) nonces.
By organizing a bounded number of agents to execute role instances alternatively,
an unbounded number of fresh copies of terms can be made.

4 Summary

We solve the open problem of Durgin, Lincoln and Mitchell [10] [11] using a
direct reduction scheme from the reachability problem of 2-counter machines.
We give a rigorous proof of correctness and carefully consider the assumptions
and scenarios of the problem. This proof method is applicable beyond the above
result. For example, with extended modeling and adaptation of the above reduc-
tion, we have proved other new and important undecidability results, including
undecidability of checking secrecy for matching RO protocols with an attacker
who is an insider.
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A Proofs of Lemmas

Lemma 1: For the role instance rw and the transition steps just described, the
following three facts are true.
1. There exists {q, C1, C2}→k0

g1

∈ knowI (E
w), such that V1 = C1 and V2 = C2.

2. For h ∈ {1, 2}, if Vh > 0, then {C−1

h , Ch}→k0
g2

∈ knowI (E
w), such that after

running Ew, Vh − 1 = C−1

h .
3. After running the two actions of rw, we call the executed action sequence so

far Ew′

. For Ew′

, V ′
h = C ′

h, for h ∈ {1, 2}. And {q′, C ′
1, C

′
2}

→
k0

g1

∈ knowI(E
w′

).

Proof. This lemma can be proven by induction on the length of the computation
of M . Base case : The first transition step must have the form of (q0, 0, 0) −→t

(q′, V ′
1 , V ′

2), for some q′ ∈ Q, and V ′
1 , V ′

2 ∈ {0, 1}. Suppose t is translated into
a role Rf of the protocol, for some f , 1 ≤ f ≤ n. r1 is a role instance of Rf .
Obviously {q0, z, z}→

k0
g1

∈ knowI(E
1) since {q0, z, z}→

k0
g1

is just produced by the

starting actions. Since 0 = z, the first fact is proved. According to Pro, the terms
{C−1

1 , C1}→k0
g2

and {C−1

2 , C2}→k0
g2

will not appear in the first message of Rf . So the

second fact is trivially true. In the first transition step, either V ′
h = Vh + 1 = 1

or V ′
h = Vh = 0. If V ′

h = 1, then according to the design of Pro, the second
message of r0 must include a term {z, [Af , C+1

h ]}→
k0

g2

. Since 0 = z, after running

r1, V ′
h = 1 = C ′

h, where C ′
h = [Af , C+1

h ]. If V ′
h = 0, then V ′

h = 0 = C ′
h, where

C ′
h = Ch = z. Also by the design of Pro, the q′ and q in Rf are always the same

as the q′ and q in t. Finally, {q′, C ′
1, C

′
2}

→
k0

g1

represents (q′, V ′
1 , V ′

2). The third item

is proven. The base case is proven.
Induction step : Suppose for the w − 1th step, the lemma is true. We need

to prove that the lemma is also true for the wth transition step.
Fact 1. The wth step is of the form (q, V1, V2) −→t (q′, V ′

1 , V ′
2), where the

configuration (q, V1, V2) must be just generated by the w − 1th step. By the
induction hypothesis, for the w − 1th step, which just occurred in the run, the
lemma is satisfied, so there must be a term {q, X1, X2}→k0

g1

generated in the

second action step of rw−1, where V1 = X1 and V2 = X2. In other words, the
same instance of the term {q, X1, X2}→k0

g1

generated by the second action step of

rw−1 is used to instantiate the term {q, C1, C2}→k0
g1

in rw . Note that Ew−1
′

= Ew.

Obviously the needed term instance of {q, C1, C2}→k0
g1

for rw is in knowI(E
w).

The first fact is proven.
Fact 2. If Vh > 0, then according to the design of Pro, the instance of

{C−1

h , Ch}→k0
g2

will appear in the first message of rw . By Fact 1 above, Vh =

Ch after running Ew. By the definition of encoding, there must be a encoding



Secrecy Checking of Protocols: Solution of an Open Problem 19

sequence of Ch, where the last term of this sequence has the form {X, Ch}→k0
g2

,

and X = Vh − 1. The instance of {X, Ch}→k0
g2

must be included in knowI(E
w),

and is used to instantiate {C−1

h , Ch}→k0
g2

. The second fact is proven.

Fact 3. We only need to show that V ′
h = C ′

h, and the term {q′, C ′
1, C

′
2}

→
k0

g1

will

obviously be generated in the second message of rw and ∈ knowI(E
w′

). There
are three possible cases for the value of jh in t, for h ∈ {1, 2}.
– jh = −1 and V ′

h = Vh − 1. According to the design of Pro, C ′
h = C−1

h . By
the proven fact 2, V ′

h = Vh − 1 = C−1

h = C ′
h.

– jh = 0 and V ′
h = Vh. According to the design of Pro, C ′

h = Ch. By the
proven fact 1, V ′

h = Vh = Ch = C ′
h.

– jh = +1 and V ′
h = Vh + 1. Then according to the design of Pro, C ′

h =
[Af , C+1

h ]. According to the design of the protocol and the run, in the second
message of rw , there must be a term {Ch, [Af , C+1

h ]}→
k0

g2

included in the

second message of rw, where C+1

h is a fresh nonce generated by the attacker.
By the proven fact 1, Vh = Ch. Then by the definition of encoding, after

running rw , V ′
h = Vh + 1 = [Af , C+1

h ] = C ′
h.

ut

Lemma 2 : For an arbitrary run of Pro with the attacker (an outsider, as de-
scribed earlier) for every configuration term of the form {q, C1, C2}→k0

g1

generated

in run (q is any state), it encodes a reachable configuration, say (q, V1, V2), of
the two counter machine M = (Q, δ), in the sense that Vh = Ch, for h ∈ {1, 2}.

Proof. This lemma is proven by induction on the sequence of configuration terms
generated in the run. The proof does not distinguish whether a nonce variable is
instantiated by a true nonce or a composite term. So it does not matter whether
type-flaw is allowed or not.

Base case : Consider the first configuration term generated. By Observation
1, every configuration term must be generated by a regular agent. A configuration
can be generated either by a role instance of R0 or a role instance of a transition
role Rf , where 1 ≤ f ≤ n. The first configuration term cannot be generated
by a role instance of Rf , since Rf needs to receive a configuration term in its
first message, which must have been generated even earlier, impossible. So the
first configuration term must be {q0, z, z}→

k0
g1

generated by a role instance of R0.

Obviously {q0, z, z}→
k0

g1

encodes the reachable configuration (q0, 0, 0) of (Q, δ)

when it is generated.
Induction step : Suppose for a configuration term X generated in run, all

of the earlier generated configuration terms satisfy the lemma, we need to prove
that X also encodes a reachable configuration of M .

The configuration term must be generated by a role instance, say r, executed
by a regular agent. There are two possibilities.

1) r.role = R0. Then X = {q0, z, z}→
k0

g1

and it is the same as the base case.

2) r.role = Rf , 0 < f ≤ n. We only need to prove this case. Then X must be
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the term {q′, C ′
1, C

′
2}

→
k0

g1

generated in the second action step of r.acts. By the

construction of the protocol, there must be a term {q, C1, C2}→k0
g1

include in the

first message received in r. By observation 1, this term cannot be instantiated
by an encrypted term other than a ground configuration term which is gener-
ated earlier. By the induction hypothesis, {q, C1, C2}→k0

g1

encodes a configuration

(q, V1, V2), which is reachable from the starting configuration of M . Rf must cor-
respond to a transition rule of the 2-counter machine, say t. Now we show that
t is applicable to (q, V1, V2), and after applying t to (q, V1, V2), a configuration
(q′, V ′

1 , V ′
2) can be reached, such that {q′, C ′

1, C
′
2}

→
k0

g1

encodes it.

First, we show that t is applicable to (q, V1, V2). t must have the form of
[q, i1, i2] → [q′, j1, j2]. There are different cases to consider based on the possible
values of ih, for h ∈ {1, 2}.

– If ih = 1, we need to show that Vh > 0. By the construction of Rf , there is
a term {C−1

h , Ch}→k0
g2

included in the first message of Rf . This term must be

instantiated by a ground number connection term, as showed by Observation
1. By Observation 2, Ch 6= z. Since Ch must encode either a positive number
or 0, while 0 can only be encoded by z as showed by Observation 5, so Ch > 0.
By the induction hypothesis, Vh = Ch. So Vh > 0.

– If ih = 0, then we need to show that Vh = 0. By the construction of Rf ,
Ch = z. Obviously 0 = Vh = Ch.

So t is applicable to (q, V1, V2).

Second, we need to show that after applying t to (q, V1, V2), the new reachable
configuration (q′, V ′

1 , V ′
2) is encoded by {q′, C ′

1, C
′
2}

→
k0

g1

. By the construction of Rf ,

the state terms q and q′ in r match with states of t, so we only need to show
that V ′

h = C ′
h. There are different cases to consider for the possible values of jh,

for h ∈ {1, 2}.

– If jh = 0, then V ′
h = Vh. Then, by the construction of Rf , it must be true

that C ′
h = Ch. Since Vh = Ch by the induction assumption, V ′

h = C ′
h.

– If jh = +1, then V ′
h = Vh+1. By the construction of Rf , there must be a term

C+1

h included in the first message of r. In the second message of r, a number
connection term {Ch, [Af , C+1

h ]}→
k0

g2

is generated, and C ′
h = [Af , C+1

h ]. Then

by the definition of encoding, Ch + 1 = [Af , C+1

h ] = C ′
h. Since Vh = Ch, and

Ch can only encode a unique number by Observation 4, V ′
h = Vh+1 = Ch+1

= C ′
h.

– If jh = −1, then V ′
h = Vh − 1. By the construction of Rf , there must be

a term {C−1

h , Ch}→k0
g2

included in the first message of r. C ′
h = C−1

h . By the

induction hypothesis, Vh = Ch, and Vh > 0. By Observation 3, Ch 6= z, since
z can only encode 0. Then by the definition of encoding sequence, there exists
a term {Y, Ch}→k0

g2

in the encoding sequence of Ch, which has appeared in

the run and known by I , where Vh − 1 = Ch − 1 = Y .
By Observation 3, the term {Y, Ch}

→
k0

g2

is unique, Then, the attacker can

only use {Y, Ch}→k0
g2

as the term {C−1

h , Ch}→k0
g2

. So V ′
h = Vh − 1 = C−1

h = C ′
h.
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So the induction step is proven. ut

B Detailed Proof of Theorem 2

Theorem 2: Suppose for a variable, say X , appearing in a role executed by a
regular agent A, and the value of X is not determined by A (X first appears in
the role in a message received by A), A must do one of the two kinds internal
actions to X upon receiving it as follows. 1) A will make sure that X ∈ A.init,
e.g., X is an agent name.; Or 2) A will check that X /∈ A.mem, e.g., X should
be treated a nonce freshly generated by some agent other than A. With this
consideration the open problem described in theorem 1 is still undecidable.

Proof. Now each transition role, say Rf , 1 ≤ f ≤ n, executed by Af , will require
in 1.pre (the precondition of receiving message 1) that {C−1

h , Ch}∩A.mem = ∅,
C−1

h 6= Ch, and in 1.post A will requires that {C−1

h , Ch} ⊆ A.mem, for h = 1
or/and h = 2 (A remembers them).

The following two roles Rs1, Rs2 (s stands for stronger) are used to generate
fresh and equivalent copies of terms. They are added to Pro.roles.

Rs1 = [RID, agent, vars, acts, conds]
– RID = rs1; agent = [name, init, mem]; vars = {As1, V1, V2, X, Y, B}.
– acts = 1. − (B ⇒ As1) : B, As1, rs1, {V1, X}→

k0
g2

, {V1, V2}→k0
g3

, Y

2. + (As1 ⇒ B) : As1, B, {V2, [As1, Y ]}→
k0

g2

, {X, [As1, Y ]}→
k0

g3

– conds = { 1.pre : (As1, rs1, B, k1
g2, k

1
g3, z} ⊆ init, name = As1,

{As1, B} ⊂ AN, As1 6= B, {X, Y, V1, V2} ∩ mem = ∅,
X 6= Y , X 6= V1, X 6= V2, Y 6= V1, Y 6= V2,
V1 = z or V1 /∈ mem, V2 = z or V2 /∈ mem,
V1 = V2 = z or V1 6= V2)

1.pos : ({V1, V2, X, Y } ⊆ mem);
2.pre : ( k0

g2 ∈ init, k0
g3 ∈ init) }

The term {X, [A, Y ]}→
k0

g3

is to show the equivalence between the term X and

[A, Y ]. We call the a term of the form {U, V }→
k0

g3

as equivalence term where

U and V are two arbitrary terms. Every regular agent knows the key pair k0
g3

and k1
g3, while the attacker only knows the key k1

g3. Vh, h ∈ {1, 2}, is required to
either be z or some term A has never seen before. In the literature we do not see
many cases of internal action of logical or, although it is trivial to implement it.
If we do not allow an agent to do logical or, we can design four different roles
depending on Vh is z or not, h ∈ {1, 2}, and the proof still works. Y is provided
by the attacker. That attacker has to generate unbounded number of nonces to
instantiate Y in unbounded number of role instances of Rs1 in order to generate
unbounded number of copies (with bounded size) of terms.

The role Rs2 creates a copy of a configuration term by using the equivalent
terms of Ch, h ∈ {1, 2}.
Rs2 = [RID, agent, vars, acts, conds]
– RID = rs2; agent = [name, init, mem]; vars = {As2, G, C1, C2, X, Y, B}.
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– acts =1.− (B ⇒ As2) : B, As2, rs2, {G, C1, C2}→k0
g1

, {C1, X}→
k0

g3

, {C2, Y }→
k0

g3

2. + (As2 ⇒ B) : As2, B, {G, X, Y }→
k0

g1

– conds ={ 1.pre :( {As2, rs2, B, k1
g1, k

1
g3, z} ⊆ init, name = As2,

{As2, B} ⊂ AN, As2 6= B, {X, Y } ∩ mem = ∅, G ∈ Q,
C1 = z or (C1 /∈ mem, C1 6= C2, C1 6= X, C1 6= Y, X 6= Y ),
C2 = z or (C2 /∈ mem, C2 6= C1, C2 6= X, C2 6= Y, X 6= Y ) ) ;
1.pos : ({X, Y, C1, C2} ⊂ mem);
2.pre : ( k0

g1 ∈ init) }
Again, we allow the logical or in the internal action to treat C1 and C2.

Otherwise we could design four different roles depending on the choices of values
of C1 and C2.

In addition, we adjust R0 so that the first message of R0 will include one
more term of the form {z, z}→

k0
g3

. This is to show that z is equivalent to itself.

This term is the first equivalence term generated in a run and is needed to start
the process of copying encoding sequences by role instances of Rs1.

In addition to the five observations presented in the proof of theorem 1, we
can have the following observations.

Observation 6 : The equivalence term of the form {z, X}→
k0

g3

where X 6= z will

never be generated in the run. In other words, the only term of this form that
can appear in the run is {z, z}→

k0
g3

.

Observation 7 : Whenever an equivalence term of the form {U, V }→
k0

g3

is pro-

duced in the run, both U and V encodes the same number, i.e., they have some
encoding sequences, and U = V . This can be proven by induction. The first
equivalence term generated in the run must be {z, z}→

k0
g3

by a role instance of

R0 (R0 of theorem 1 is adjusted here for theorem 2). Obviously z encodes the
number 0. For the induction case, suppose for all equivalence term produced in
the run so far the observation is true. The next generated equivalence term must
be of the form {X, [As1, Y ]}→

k0
g3

generated in the second message (Msg2) of a

role instance of Rs1. Since {V1, V2}→k0
g3

must appear in the first message (Msg1)

of Rs1, V1 and V2 must encode the same number by the induction hypothesis.
Since {V1, X}→

k0
g2

appears in Msg1, X must encode the number V1 + 1. Since in

Msg2 {V2, [As1, Y ]}→
k0

g2

appears, [As1, Y ] must encode V2 + 1. So X = [As1, Y ],

where U = X and V = [As1, Y ].

Observation 8 : Whenever a number connection term of the form {U, V }→
k0

g2

is

produced in the run, both U and V encode some number, i.e., each of U and V
has its own encoding sequence, and V = U + 1. This observation can be proven
by induction, similar to the proof of Observation 7. Note that when the term
{V2, [As1, Y ]}→

k0
g2

is generated by a role instance of Rs1, V2 must encode some

number since {V1, V2}→k0
g3

appears in Msg1 and Observation 7 guarantees that

V2 has an encoding sequence. So [As1, Y ] = V2 + 1.

Observation 7 and 8 can show that a term cannot be copied unless all of
its precedents in its encoding sequence are copied. So the attacker cannot use a
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term t′ as a new equivalent copy of a term t while t′ does not encode the same
number that t encodes.

Observation 9 : An execution of a role instance of Rs1 could produce a new
term [As1, Y ] which encodes some number, say u, and u = [As1, Y ]. However u
will never be larger than the largest encoded number (the largest counter value)
reached so far in the run. The reason is that the new number-encoding term
[As1, Y ] must encode the same number as V2 does, by Observation 7, and the
encoding sequence of V2 has been produced earlier, and V2 represents a counter
value that has already been reached in the run of M .

By Observation 9, and by the fact that Rs2 does not create new number
connection terms, it follows that the counter value is increased or decreased
solely by the transition roles (Rf , 1 ≤ f ≤ n). In other words the two additional
roles Rs1 and Rs2 do not interfere with the computation, they are only used to
make copies of the computation results. It is obvious that the five observations
(1 to 5) described in direction 2 of the proof of theorem 1 are still true. Then
direction 2 can be proven exactly the same as in theorem 1.

To prove direction 1 is to show that when M can reach a final configuration,
there is an attack to Pro such that no agent will accept a nonce which is supposed
to be freshly generated by others and the agent has seen it before. If we assume
infinite many different agents participating in the run, in order to construct the
attack, we can always choose a new agent, who has not participated in the run
yet, to execute the next role instance, and then every agent will not see the
same term twice since he only participates in one role instance in the run, and
then the strong condition is trivially satisfied. The more interesting question is
whether there is such an attack where only bounded many agents are allowed.

We can organize the agents in the attack in three groups by different taskes
as follows. 1) Let a bounded number of agents perform the unbounded number
of role instances of Rs1 to produce unbounded number of new copies of number-
encoding terms, i.e., to copy the whole encoding sequence. We will show how this
can be done soon. 2) Let two agents b1 and b2 execute the unbounded number of
role instances of Rs2 to generate unbounded many new copies of configuration
terms. 3) Let a single agent a execute all of the role instances of R0, Rfinal and
Rf , 1 ≤ f ≤ n.

The attack can be described as follows. Same as the attack described in the
proof of direction 1 of theorem 1, every reachable configuration in the compu-
tation of M corresponds to a configuration term generated in the run of the
protocol. In theorem 1, the configuration term just generated is used as an input
to a transition role instance to produce the next configuration term. Here the
difference is that a new equivalent copy of the configuration term just generated
is used as the input instead.

The first configuration term is {q, z, z}→
k0

g1

generated by a role instance of R0

executed by a. This configuration term is used as an input to start producing a
sequence of “next” configuration terms produced by the role instances of Rf , 1 ≤
f ≤ n, executed by a. Whenever in the next configuration term {q, C1, C2}→k0

g1

,

for some q ∈ Q, C1 or C2 is not z (corresponding to a positive counter value
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of M), then the following process is used to produce an equivalent new copy of
{q, C1, C2}→k0

g1

.

Suppose u is the largest positive number one counter has reached so far
in the computation of M , which must corresponds to some term, call it Cu,
produced in the run of Pro and Cu = u. Cu has an encoding sequence consisting
a chain of number encoding terms like z, X1, X2, · · · , Cu. A sequence of role
instances of Rs1, executed by agents of group 1), are used to generate a new
copy the encoding sequence, where the sequence of number encoding terms are
z, X ′

1, X
′
2, · · · , Cu′

, and the terms along the two sequences are equivalent one-
to-one. Which means that there are equivalence terms of {z, z}→

k0
g3

, {X1, X
′
1}

→
k0

g3

,

{X2, X
′
2}

→
k0

g3

, · · · , {Cu, Cu′

}→
k0

g3

generated in the run. We can view the new copy

of the encoding sequence in a chart as an upper layer built from the current
sequence, the lower layer, with equivalent length. Then choose the term from
the new copy of the encoding sequence, say X , which is equivalent to Ch, i.e.,
{Ch, X}→

k0
g3

is produced. Do the same for both counters, if both counter are

positive.

A role instance of Rs2 is executed by agents b1 or b2 of group 2), where
Msg1 contains the input terms of {q, C1, C2}→k0

g1

, {C1, X}→
k0

g3

, and {C2, Y }→
k0

g3

.

Note that if C1 is z, then {z, z}→
k0

g3

will replace {C1, X}→
k0

g3

, and the same for C2.

Then a new configuration term {q, X, Y }→
k0

g1

is produced. It is guaranteed that

b1 or b2 have not seen X and Y yet, since X and Y are produced by the agents
of group 1). But if b1 produced the copy of the configuration term previous to
{q, C1, C2}→k0

g1

, which is used as an input to of an role instance of Rf to produce

{q, C1, C2}→k0
g1

, b1 may have seen C1 or C2 already (C1 ∈ b1.mem), in case some

counter does not change. The solution is to let b1 and b2 to execute the role
instances of Rs1 in turn to make copies of configuration terms.

More details of idea are here. If we name the sequences of role instances of
Rs2 in the attack as w1, w2 · · · , and let b1 and b2 to execute them alternatively.
Suppose b1 executes wi, i ≤ 1, then b1 sees and checks (in the most complex
situation, when both counters are positive) the uniqueness of the terms C i

1,

Ci
2, X i, Y i, C−1

1

i
, and C−1

2

i
. b2 executes wi+1, and b2 will see and check the

uniqueness of Ci+1
1 , Ci+1

2 , X i+1, Y i+1, C−1
1

i+1
, and C−1

2

i+1
, where Ci+1

1 could

be C−1

1

i
or X i, similarly for Ci+1

2 . X i and Y i are the fresh terms produced by
agents of group 1) who execute role instances of Rs1 and b2 has never seen them
before. Since wi+1 is not executed by b1, b1 does not see the same fresh term
twice. Then wi+2 is executed by b1, and b1 will see and check the uniqueness

of Ci+2

1 , Ci+2

2 , X i+2, Y i+2, C−1

1

i+2
, and C−1

2

i+2
, which are different from the

terms b1 has seen in w1. The reasoning continues and is guaranteed that b1 and
b2 will not see the same fresh term twice while copies of configuration terms can
be generated unbounded times. The idea of executing role instances in turn is
extended to organize the behavior of the agents in group 1).
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After a has produced the configuration term {q, C ′
1, C

′
2}

→
k0

g1

by executing some

role instance of Rf , 1 ≤ f ≤ n, the encoding sequence of the term, which encodes
the largest number of counter 1 and is generated for the previous configuration
term, is made, same for counter 2. A new copy of {q, C ′

1, C
′
2}

→
k0

g1

is made, say it

is {q, U, V }→
k0

g1

. a executes the next role instance of some transition role, where

the first message include the new copy {q, U, V }→
k0

g1

, and the number connection

terms {U−1, U}→
k0

g2

, and/or {V −1, V }→
k0

g2

chosen from the encoding sequence of

U and V , if both counters are, or one of them is, positive. It is guaranteed that
a has not seen U , X , V , U−1 and V −1 yet since they are produced by the agents
of group 1). The process continues until the final configuration term is produced
and the secret term is leaked.

· · ·

↑

7 z C7.1 C7.2 C7.3∗ C7.4

6 z C6.1 C6.2 C6.3 C6.4∗

5 z C5.1 C5.2 C5.3 C5.4∗

4 z C4.1 C4.2 C4.3∗ C4.4

3 z C3.1 C3.2∗ C3.3

2 z C2.1∗ C2.2

1 z∗ C1.1

0 1 2 3 4 → · · ·

Fig. 1. The copying process for one counter in the proof of direction 1 of Theorem 2

Figure 1 represents the copying process for one counter, say counter 1 (for
counter 2 it is the same), in a beginning section of a run. Roles in figure 1
are labeled from 1 to 7, representing the first 7 steps of computation of M
corresponding to 7 times of executing some transition role instances (call them
ri1 to ri7) by a. Every column is marked with a number from 0 to 4 representing
the number which the terms in the column encode. For example, the terms in
column 3, from C3.3 to C7.3 all encode 3. The term marked with ∗ represents C1

in the configuration term t = {q, C1, C2}→k0
g1

which is used as an input term for a

transition role instance of each step from 1 to 7. We call the output configuration
term by a transition role instance t′ which has the form of {q′, C ′

1, C
′
2}

→
k0

g1

. At

step 1, counter 1 is increased from 0 to 1, C1.1 appears as C ′
1 in t′ produced by

ri1. now the largest value of counter 1 is 1. One role instances of Rs1 is executed
to copy the encoding sequence of C1.1. C2.1 is equivalent to C1.1, and is used as
an input term to a role instance of Rs2

to make a new copy t′ of step 1, which
is t for step 2, where C1 in t is C2.1. At step 2, counter 1 is increased and C2.2

is the C ′
1 in t′ of step 2. Then two role instances of Rs1 are executed to make a

copy of the encoding sequence of C2.2. And C3.2 is the one equivalent to C2.2,
and is used as an input term to a role instance of Rs2 to make a new copy of t′
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of step 2, which is the t for step 3 where C1 is C3.2. In step 3 and step 4 counter
1 keeps incrementing. C3.3 is the C ′

1 of t′ of step 3, and its equivalent new copy
is C4.3, which is used as the C1 of t for step 4. Then C4.4 is the C ′

1 of t′ of step
4. C4.4 is copied to C5.4 by four role instances of Rs1. C5.4 is used as an input
term to generate the copy of t′ of step 4, and the copy is used as t for step 5. At
step 5 counter 1 stays the same, so C5.4 appears as C ′

1 of t′ of step 5. Now the
largest counter value is 4. Four role instances of Rs1 are executed to make a copy
of the encoding sequence of C5.4 where C6.4 is the one equivalent to C5.4. C6.4 is
used as an input of a role instance of Rs2 which makes a copy of the t′ of step 5,
which is t of step 6, where C1 is C6.4. At step 6 counter 1 decrements and C6.3

becomes the C ′
1 of t′ of step 6. Before step 7, the current largest counter value is

4. Although the current value is 3, the encoding sequence of C6.4 is made with
length 4 where C7.3 is the one equivalent to C6.3. Then C7.3 is used in a role
instance of Rs2 to generate a copy of t′ of step 6, which is t of step 7 where C1

is C7.3. The process continues for the remaining of the run of pro corresponding
to the computation of M until the final configuration is reached and the secret
term is leaked.

The remaining question is whether the number agents of group 1) can be
bounded for generating the unbounded copies of encoding sequences, considering
that every agent should not see the same nonce twice. We illustrate the idea by
figure 1.

Group 1) is divided to two subgroups, 1.1) works for counter 1, and 1.2)
works for counter 2. 1.1) is further divided to two subgroups 1.1.1) and 1.1.2).
The agents of group 1.1.1) do the copying tasks of the odd rows and the group
1.1.2) do the copying jobs of the even rows (see figure 1. Then it is guaranteed
that the same agents who do the copying jobs of row 1 can do the copying jobs of
row 3, since they must have not seen the terms of row 2 yet. So group 1.1.1) can
do the copying tasks for all odd rows. Group 1.1.1) may only have two agents,
say d1111 and d1112, to do the copying tasks of row 1 alternatively. For example
when d1112 executes a role instance of Rs1, in Msg1, V1 and X are produced in
the lower row by agents of 1.1), so d1111 has not seen them yet. V2 is produced
in the same row but by the other agent d1112, so d1111 has not seen it yet. Y is a
new term provided by the attacker which has not seen by d1111. Similarly group
1.1.2) can have another two different agents to do the copying tasks of the even
rows. Group 1.1) totally has four agents. Similarly in group 1.2) there are four
agents to do the copying tasks for counter 2. So totally there are eight agents in
group 1).

Totally in the three groups there are eleven agents, a small number. With
more roles introduced to implement more properties of the equivalence relation-
ship between terms, the number of agents in group 1 can be reduced, e.g., the
same four agents could cover both counters, and then group 1 may only have
four agents. The attack is found while the strong condition is satisfied, which
finishes the proof of direction 1, and the proof of theorem 2. ut
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Table 1. The complexity table provided by [10] of checking secrecy, with added ex-
planation by us. In this table, role length and size of message instances in a run are
assumed bounded. ∃ means nonce instance, 6= means regular agents require unique-
ness check on nonce instances, and disequality test is allowed, while = means that
uniqueness check and disequality test are not allowed.

Bounded
role instance

num.

Unbounded role instance num.
Bounded

total ∃ from
regular agents

Unbounded
total ∃ from

regular agents

I with unbounded ∃
6= NPC ??? Undec.
= NPC DEXPC Undec.

I with bounded ∃
6= NPC DEXPC Undec.
= NPC DEXPC Undec.

C Understanding the open problem

Table 1 shows the complexity results provided by [10] and [11] (Page 282 of [10]
and Page 47 of [11]), with more explanations added by us. In [10] the authors
focus on bounded security protocols, which means the scenario are bounded in
two aspects. First role length is bounded (Pages 250 and 261, [10]) which means
that the number of messages appearing in any role template of the protocol is
bounded. Second, the size of any message instance (the number of ground atomic
terms appearing in the message instance, which is a ground term) in a run is
bounded (Detailed discussion in Appendix C.6) , which implies that the size of
the every message template in the protocol is also bounded. We think the bound
on the role length is not essential, since without it all the complexity results of
[10] [11] are still true.

Table 1 shows the following results. Assume the protocols has bounded role
length, and consider only the runs of a protocol that has bounded size of message
instances. Left column: when the number of role instances appearing in a run of
the protocol is bounded, checking secrecy is NP-complete. Right column: when
the number of role instances in a run is unbounded, and the total number of
nonces generated from regular agents in a run is unbounded, checking secrecy is
undecidable. Middle column: Suppose the number of role instances in a run is
unbounded, checking secrecy is DEXP-complete if I can only generate bounded
number of nonces, or I can generate unbounded number of nonces while agents
do not have nonce uniqueness check.

The following sentence describing the open problem appears on Page 48 of
[11]:

“The series of ??? in the box at the top of column two indicates

an unresolved question for the upper bound in the case of un-

bounded roles, bounded protocol existentials, and unbounded

intruder existentials, when disequality tests are allowed.”

To understand the open problem (and the above sentence) is to understand
exactly the various assumed conditions and bounds and notions for the table.
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C.1 Understanding ∃ and 6=

∃ is used in [10] as a notation to show that a term is a nonce freshly generated,
and its value is different from any other term which has already appeared in the
run of the protocol so far. In our paper we represent the internal action of nonce
generation by the notation #() to avoid possible confusion.

The equality symbol = means the internal action of an agent in a run to
check the equality of two terms with the same name in the protocol. = is not an
explicit notation used in MSR, as explained in [10] Page 259:

“We do not need to add a condition to test for equality, because it is
expressible by matching the names of the variables in the terms.”

The disequality symbol 6= can represent that some term (nonce) is forced to
be unique and be different from any other term which has appeared in the run
or the protocol so far. In Table 1 and the original one in [10], the 6= (checking
uniqueness) is only applied to nonces. Here is the explanation of the original
table in [10], Page 282:

“These rows are further subdivided into the cases where the roles can
perform disequality tests which would allow them to determine whether
two fresh values are different from each other. The 6= row allows both
equality and disequality tests, while the = row allows only equality tests.
In a protocol, a test for disequality on a nonce would mean the protocol
compares a supposedly fresh nonce it receives against all the other nonces
it has received, to make sure it is actually fresh. If disequality is not
allowed, then this test is not performed.”

Here is the original explanation of ∃ in the multiset rewriting system with
disequality (MSR 6=) in [10], Page 290:

“Computationally, the meaning of ∃ in MSR 6= is clear - each value gen-
erated by an ∃ is unequal to all others. We have not investigated the
correspondence between logic and MSR 6=.”

We think the uniqueness of a term X is not easy to be expressed by just
using 6=, which is a binary predicate explicitly used in MSR as showed in some
examples in Page 259 of [10]. What is meant by Durgin et al. is that X has
to be compared with all other terms appeared so far in the run. To express
the uniqueness of a term X in MSR, some quantifier like ∀ may be needed, in
addition to describing the set which contains all the terms recorded by an agent.
We think a better way is that the uniqueness check could be expressed by other
means, while 6= can be kept as a binary predicate. In other words, for the open
problem “disequality test” really means allowing an agent to do disequality test
on two terms and requiring uniqueness check on nonces.
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C.2 Understanding Uniqueness Check

The only practical way to implement the uniqueness check of nonces is that
every agent maintains a memory recording all nonces which the agent has seen
so far in the run, in addition to her initial knowledge.. Then whenever a term
which is supposed to be a fresh nonce comes, the agent checks that it is different
from all of the recorded terms in her memory. There are three interpretations of
the sentence in Page 282 of [10], just quoted in the above section: “· · · a test for
disequality on a nonce would mean the protocol compares · · · ”.

X in a run of a protocol is that an agent maintains a memory recording or
of the atomic terms it has seen so far in the run, and then when X is received
by the agent, she checks that X is different from all terms in the memory.

The first interpretation. For every possible run of the protocol, after a term
is accepted by a regular agent once as a freshly generated term, the term cannot
be accepted again by any regular agent as a new fresh term. In other words,
every ground term can only be accepted as a fresh one at most once in the whole
run (the ground term accepted as fresh by the same agents twice, or by two
different agents each once, counts 2). By saying “an agent accepts a term as a
fresh one” we mean that the agent will do the uniqueness check of the term upon
receiving it. Since we assume different agents do not share memory (a practical
assumption for the distributed nature of the agents), it should be very hard,
even unlikely, for two agents to not accept the same fresh nonce, although both
agents can only accept the same nonce once. It seems that in order to implement
the first interpretation, only one fixed agent will do all of the uniqueness check of
the supposed fresh terms, and the other agents do not care about the uniqueness
of fresh terms.

The second interpretation. Due to the rareness of the protocol that can satisfy
the first interpretation, we can say that the analysis only consider the runs of a
protocol such that a nonce can be accepted as fresh at most once.

The third interpretation. The word “protocol” should be replaced by “princi-
pal”. A protocol does not receive nonces, only a principal (equivalently an agent)
receives nonces. In this case the open problem means that when a term, which
is supposed to be freshly generated nonce, is received and accepted by a regular
agent, it can be instantiated by a recycled term (in the sense that the term has
already been accepted by another agent as a fresh term once in the run so far),
provided that it is not received by or known by this agent before. It means that
each agent can only accept a nonce as a fresh one at most once, but the same
nonce could be accepted by different agents.

We believe that the third interpretation is more general and practical. In the
proof of Theorem 1, we construct a protocol such that the third interpretation is
guaranteed in any run of the protocol. However, by fixing the name of the agent
of every role template with the same constant agent name, the proof will also
work to show the undecidability with the first and second interpretations.
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C.3 Uniqueness Check is Necessary for the Undecidability of the

Open Problem

The first necessary condition for the undecidability of the open problem is the
capability of the attacker to generate unbounded many nonces. The second nec-
essary condition is the uniqueness check by a regular agent. Without the second
condition, it is proved decidable by [10] [11]. It is interesting to see how the
second condition is reflected in our proof. Here we give an example to show that
without the uniqueness check, the proof will not go through, by showing that
the protocol will generate a final configuration term while it is impossible for
the corresponding 2-counter machine to reach qfinal.

Let a 2-counter machine be M = (Q, δ). Let Q = {q0, q1, q2, q3, q4, q5, q6, qfinal}.
Let δ = { [q0, 0, 0] → [q1, +1, 0]; [q1, 1, 0] → [q2, +1, 0]; [q2, 1, 0] → [q3, +1, 0];
[q3, 1, 0] → [q4,−1, 0]; [q4, 1, 0] → [q5,−1, 0]; [q5, 1, 0] → [q6,−1, 0]; [q6, 1, 0] →
[qfinal,−1, 0] }.

The second counter will always be 0. It is obvious that the 2-counter machine
cannot reach qfinal, since the only way to reach qfinal is to increment the first
counter 3 times, starting from 0, and then decrement it 4 times. qfinal can only
be reached from q6, by applying the last transition rule. Whenever M reaches
q6, the first counter is 0, and the last transition rule cannot be applied, since it
requires the first counter to be positive.

If an agent does not do the uniqueness check on nonces, even though the agent
may require the nonces appearing in the same role instance to be different, there
is a run of the corresponding constructed protocol, where the final configuration
term can be generated. The attacker can generate two different fresh nonces x
and y. Let a single agent a execute all of the transition role instances in the run.
The first time the counter needs to be incremented, the attacker tells a that x
is the new nonce. The second time, the new nonce is y. And the third time, it
is x again. So there is no problem to generate the configuration term containing
q3. And the number connection terms generated in the run are {z, [a, x]}→

k0
g2

,

{[a, x], [a, y]}→
k0

g2

, {[a, y], [a, x]}→
k0

g2

. This can happen since a does not remember

nonces received in previous role instances, although a may require that x 6= y
in every role instance. The Observation 3 is violated, and so is Observation 4.
Whenever the first counter needs to be decremented from [a, x], the attacker will
use the number connection term {[a, y], [a, x]}→

k0
g2

, to show that [a, y] = [a, x]−1,

and discard {z, [a, x]}→
k0

g2

. Then starting from q3, in the run of the protocol, the

first counter can be decremented 4 times. from [a, x] to [a, y], to [a, x], to [a, y],
and then to [a, x]. So a final configuration term {q1, [a, x], z}→

k0
g1

can be generated.

C.4 Understanding “Role” and the Bounds on Nonces

We add more explanations in Table 1 than the original table appearing in Page
282 of [10]. What we call “role instance” in Table 1 is called “role” in the table
of [10]. The original table considers the nonces generated by all regular agents or
the attacker I . The terms “bounded ∃” and “Unbounded ∃” in the original table
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are replaced by “Bounded total ∃ from regular agents” and “ Unbounded total
∃ from regular agents” in Table 1, respectively. We use the word “total” since
in [10] it is the total number of nonces generated from all regular agents that is
considered. Since the consideration of nonces generated from I is orthogonal to
the consideration of nonces generated from regular agents, the words “I with ∃”
and “I no ∃” appearing in the original table are replaced by “I with unbounded
∃” and “I with bounded ∃”, respectively. Note that assuming I with bounded
∃ will not make any different results in the table from assuming I with no ∃,
since the same results can be proved by the same reasoning assuming I with no
∃. We quote some sentences from Durgin’s thesis [11], where more explanations
of some aspects are included than [10].

In Page 49 of [11], section 2.5.3.2, in the proof of “Bounded existentials
without disequality is in DEXP”, the key reason to show DEXP is the following:

“Therefore there is an exponential bound on the number of distinct
ground facts that may appear in any possible protocol execution.”

There is no need to differentiate the bounded number of distinct ground facts
generated from regular agents or from the attacker, in order to show the DEXP
results.

Later in the same proof, in Page 50 of [11]:

“The above argument assumes that the number of intruder existentials
is bounded.”

Another place where the unbounded number of nonces generated from the
attacker is the sentence in [11] Page 48 explaining the open problem, quote at
the beginning of Appendix C.

From the quotations above, it is clear that “I no ∃” and “I with ∃”‘ in the
original table in [10] are better explained as “I with bounded ∃” and “I with
unbounded ∃”, as shown in Table. 1.

C.5 Outsider Attacker and Non-Matching RO protocol

Note that for these complexity results, the attacker is considered as an outsider,
since according to the proofs in [10] and [11] of these results, the attacker does
not know a key that is known by all insiders (with the definitions of this paper,
we may call the key K and K ∈ Pro.gk), and the attacker cannot participate
as an insider in a protocol run.

The protocols constructed in the proofs of [10] and [11] are a set of role
templates. We call this kind of protocol Role-Oriented (RO). Especially, in these
protocols, for some message received in a role, the corresponding role that sends
the message is missing. We call this kind of RO protocol non-matching.

C.6 Understanding Bounded Size of Message Instances and Type

Flaw

To understand the assumption of bounded message size, say bounded by K, in
[10] and [11], there can be two interpretations.
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1) Consider only those protocols such that every possible run of the protocol
cannot have a message instance with size larger than K.

The protocol constructed in the proof of the undecidability result in [10] and
[11], by translating a Turing machine tabular to a set of Horn clauses without
function symbols, and then to the protocol, is of this kind. The reason is the
following: (a) Every nonce appearing in the run is generated by a regular agent.
(b) The attacker cannot construct any encryption due to his ignorance of the
encryption key. (c) The attacker cannot put any term generated by him into
any encryption term in the run. (d) Different kinds of encryption terms include
different constants, so different encryption terms cannot be used interchangeably.
So there is no type flaw in any run of the protocol, and every nonce variable is
instantiated by an atomic term. Therefore the size of the largest message instance
in a run is the same as the symbolic size of the largest message template in the
protocol, which is chosen as the bound.

2) Although it is possible that in a run of the protocol a message can have
unbounded size, the analysis only considers the runs with message sizes bounded,
and neglects those runs having messages with sizes larger than K.

Assuming the interpretation 2), all of the results in the complexity tables
in [10] and [11] are still right. Actually there is a caption of that table, saying
that there is a limit on term size. In fact interpretation 2) is a stronger case
covering the interpretation 1), which makes the decidable results of the table
more interesting.

We have to justify that 2) is the right interpretation. The reason is that
considering nonces from the attacker will induce a conflict with the interpretation
1), as explained below.

If the nonces generated by the attacker are not used in any messages accepted
by regular agents, or only bounded many attacker’s nonces appear in these ac-
cepted messages, the problem is trivially the same as assuming bounded number
of nonces generated from the attacker. Then the open problem is not open, since
its complexity is already obtained by [10] and [11], which is DEXP-complete,
when regular agents can generate bounded number of nonces.

It will not be meaningful to discuss the open problem unless the unbounded
attacker nonces effectively participate in a run of the protocol. That is, the
attacker nonces can appear in messages accepted by regular agents. Then it is
non-stoppable for the attacker to use composite term as a nonce, and introduce
the type flaw. And then the size of a message in a run will never be guaranteed
to be bounded.

There are sentences in [10] express the similar meaning as interpretation 2),
such as the one in Page 279:

“So we will consider derivations that limit both the length of messages
and the depth of encryption, by bounding the size of the ground facts
that can appear in a derivation.”

So 2) is the only correct interpretation for the bounded message size assump-
tion, which is applied to the open problem.
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C.7 Assuming Bounded Number of Agents

In the description of the open problem in theorem 1 we assumed that (condition
vii) only runs with bounded number of agents are considered. The reason is the
follows. First, in the undecidability proof of [10], only a small number of agents
need to participate in a run. Second, allowing unbounded many agents in a run
the proof of Theorem 1 still works and the open problem is also undecidable.
However, assuming bounded number of agents makes the proof more challenging,
since assuming more bounds in general can make a undecidability result stronger
which automatically implies the undecidability result of a corresponding setting
with less bounds. The proof of Theorem 2 would be considerably easier if un-
bounded number of agents are allowed in a run. Third, if unbounded number of
agents are allowed to participate in a run, the attacker could always choose a new
agent to execute the next role instance. Then since every agent can only execute
one role instance, the behavior of uniqueness check of an agent A to terms re-
ceived by A in a run so far, as required by the open problem, becomes irrelevant,
and there is no need to specify A.mem. We can observe that if we require only
bounded number of nonces can be generated, while unbounded number of agents
are allowed, the proof of Theorem 1 can still work. The reason is that the un-
bounded number of agent names can be used to simulate the unbounded counter
values and carry out the reduction. This observation also confirms that the gen-
eral reason of undecidability for checking security protocols is that unbounded
number of different terms can appear in a run of a protocol.

D The Errors of [13] and Our Fix

In [13] a symmetric key, say K, is used as the encryption key for all encryptions,
which is not known to the attacker. We use different asymmetric keys for different
kinds of encryptions, for the reasons explained in Observation 1 of direction 2 in
the proof of Theorem 1. We describe the errors of the scheme in [13] to reduce
a 2-counter machine transition rule to a protocol role.

Error 1 : 0 can be decremented, and effectively a counter of -1 can be reached.
The dummy term {z, z}↔K is always available since it is produced by the starting
role. Then this term can be effectively used as the number connection term to
show that z = z − 1. Or in fact 0 − 1 = 0 is allowed.

Example : Suppose the only rule of the 2-counter machine is: [q0, 0, 1] →
[qfinal, +1,−1]. Starting from (q0, 0, 0), it is obvious that no rule is applicable
and qfinal cannot be reached. The corresponding transition role according to
[13], using our notations of terms and nonce generation, and message sending
and receiving. is :
1. −(B ⇒ A) : {z, z}↔K , {q0, z, W2}↔K , {W ′

2, w2}↔K
2. #A(W ′

1) +(A ⇒ B) : {z, W ′
1}

↔
K , {qfinal, W

′
1, W

′
2}

↔
K , {z, z}↔K

However, the attacker can send the message: {z, z}↔K , {q0, z, z}↔K , {z, z}↔K as
the first message to A. The terms {z, z}↔K and {q0, z, z}↔K are known by the
attacker since they are produced by a role instance of the starting role. Then
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A will respond and send the message {z, W ′
1}

↔
K , {qfinal, W

′
1, z}

↔
K , {z, z}↔K . It is

wrong since a configuration term encoding a final configuration should not be
generated.

The fix of error 1 : In our reduction scheme, we make sure that no term
of the form {X, z}→g2 can be generated, as showed in Observation 2. So 0 can
never be decremented, and the first error is avoided. After applying our rewrite
rules, the actions of the corresponding role in the protocol for solving the open
problem will be follows.
1. −(B ⇒ A) : B, A, r1, {q0, z, C2}→k0

g1

, {C−1
2 , C2}→k0

g2

, C+1
1

2. +(A ⇒ B) : A, B, {qfinal, C
+1
1 , C−1

2 }→
k0

g1

, {z, [A, C+1
1 ]}→

k0
g2

The final configuration term will not be generated by this role, since there
is no number connection term available to instantiate the term {C−1

2 , C2}→k0
g2

in

the first message.
Error 2 : No guarantee that a counter is positive. When ih = 1, for h ∈

{1, 2}, there is no way to make sure that the counter Ch is positive, and 0 can
be used as a positive number.

Example : Suppose the only rule of the 2-counter machine is: [q0, 0, 1] →
[qfinal, +1, +1]. Starting from (q0, 0, 0), it is obvious that no rule is applicable
and qfinal cannot be reached.

The corresponding transition role according to [13] is :
1. −(B ⇒ A) : {z, z}↔K , {q0, z, W2}↔K , {z, z}↔K
2. #A(W ′

1, W
′
2) +(A ⇒ B) : {z, W ′

1}
↔
K , {qfinal, W

′
1, W

′
2}

↔
K , {W2, W

′
2}

↔
K

However the attacker can use z as the positive counter value W2, and send the
following message to A: {z, z}↔K , {q0, z, z}↔K , {z, z}↔K . And then A will respond
and send {z, W ′

1}
↔
K , {qfinal, W

′
1, W

′
2}

↔
K , {z, W ′

2}
↔
K . It is wrong since a configura-

tion term encoding a final configuration should not be generated.
The fix of error 2 : When a counter value, say X , is supposed to be positive,

there must be a term of the form {Y, X}→
g0
2

received in the first message of the

transition role. So the counter is guaranteed be positive, and the second error is
avoided.

The actions of the corresponding role in the protocol for solving the open
problem will be follows.
1. −(B ⇒ A) : B, A, r1, {q0, z, C2}→k0

g1

, {C−1
2 , C2}→k0

g2

, C+1
1 , C+1

2

2. +(A ⇒ B) : A, B, {qfinal, C
+1
1 , C+1

2 }→
k0

g1

, {z, [A, C+1
1 ]}→

k0
g2

, {C2, [A, C+1
2 ]}→

k0
g2

The final configuration term will not be generated by this role, since there
is no number connection term available to instantiate the term {C−1

2 , C2}→k0
g2

in

the first message. These fixes are crucial to maintain Observations 2, 4, and 5 in
direction 2.


