
Reading: Chapter 2

§ Informally, a state diagram that comprehensively
captures all possible states and transitions that a
machine can take while responding to a stream or
sequence of input symbols

§ Recognizer for “Regular Languages”

§ Deterministic Finite Automata (DFA)
§ The machine can exist in only one state at any given time

§ Non-deterministic Finite Automata (NFA)
§ The machine can exist in multiple states at the same time

2

§A Deterministic Finite Automaton (DFA)
consists of:
§ Q ==> a finite set of states
§ ∑ ==> a finite set of input symbols (alphabet)
§ q0 ==> a start state
§ F ==> set of accepting states
§ δ ==> a transition function, which is a mapping

between Q x ∑ ==> Q

§A DFA is defined by the 5-tuple:
§ {Q, ∑ , q0,F, δ }

3

§ Input: a word w in ∑*
§Question: Is w acceptable by the DFA?
§Steps:

§ Start at the “start state” q0

§ For every input symbol in the sequence w do
§ Compute the next state from the current state, given the

current input symbol in w and the transition function
§ If after all symbols in w are consumed, the current

state is one of the accepting states (F) then accept
w;

§ Otherwise, reject w.

4

§ Let L(A) be a language recognized by a DFA A.
§ Then L(A) is called a “Regular Language”.

§ Locate regular languages in the Chomsky Hierarchy

5

6

Regular
(DFA)

Context-
free

(PDA)

Context-
sensitive

(LBA)

Recursively-
enumerable

(TM)

• A containment hierarchy of classes of formal languages

§ Build a DFA for the following language:
§ L = {w | w is a binary string that contains 01 as a substring}

§ Steps for building a DFA to recognize L:
§ ∑ = {0,1}
§ Decide on the states: Q
§ Designate start state and final state(s)
§ δ: Decide on the transitions:

§ “Final” states == same as “accepting states”

§ Other states == same as “non-accepting states”

7

8

q0

start
q1

0

Regular expression: (0+1)*01(0+1)*

1 0,10

1
q2

Accepting
state

• What if the language allows
empty strings?

• What makes this DFA deterministic? • Q = {q0,q1,q2}

• ∑ = {0,1}

• start state = q0

• F = {q2}

• Transition table

q2q2*q2

q2q1q1

q0q1q0

10
st

at
es

symbols

Clamping Logic:
§ A clamping circuit waits for a ”1” input, and turns on forever.

However, to avoid clamping on spurious noise, we’ll design a
DFA that waits for two consecutive 1s in a row before clamping
on.

§ Build a DFA for the following language:
L = { w | w is a bit string which contains the

substring 11}

§ State Design:
§ q0 : start state (initially off), also means the most recent input was

not a 1
§ q1: has never seen 11 but the most recent input was a 1
§ q2: has seen 11 at least once

9

§Build a DFA for the following language:
L = { w | w is a binary string that has

even number of 1s and even number of 0s}

10

q0

start
q1

0

1

q2

Accepting
state

q3

111

0

0

0

§ δ (q,w) = destination state from state q on input string w

§ δ (q,wa) = δ (δ(q,w), a)

§ Work out example #3 using the input sequence w=10010, a=1:

§ δ (q0,wa) = ?

11

A DFA A accepts string w if there is a path from q0 to an
accepting (or final) state that is labeled by w

§ i.e., L(A) = { w | δ(q0,w) Î F }

§ I.e., L(A) = all strings that lead to an accepting state from q0

12

NON-DETERMINISTIC

§ A Non-deterministic Finite Automaton (NFA)
§ is of course “non-deterministic”

§ Implying that the machine can exist in more than one state at the same
time

§ Transitions could be non-deterministic

13

qi

1

1

qj

qk

… • Each transition function therefore
maps to a set of states

NON-DETERMINISTIC
NFA
§A Non-deterministic Finite Automaton (NFA)

consists of:
§ Q ==> a finite set of states
§ ∑ ==> a finite set of input symbols (alphabet)
§ q0 ==> a start state
§ F ==> set of accepting states
§ δ ==> a transition function, which is a mapping

between Q x ∑ ==> subset of Q

§An NFA is also defined by the 5-tuple:
§ {Q, ∑ , q0,F, δ }

14

§ Input: a word w in ∑*

§ Question: Is w acceptable by the NFA?

§ Steps:
§ Start at the “start state” q0
§ For every input symbol in the sequence w do

§ Determine all possible next states from all current states, given
the current input symbol in w and the transition function

§ If after all symbols in w are consumed and if at least one of
the current states is a final state then accept w;

§ Otherwise, reject w.

15

NFA

16

q0

start
q1

0

0,1 0,1

1
q2

Final
state

• Q = {q0,q1,q2}

• S = {0,1}

• start state = q0

• F = {q2}

• Transition table

{q2}{q2}*q2

{q2}Φq1

{q0}{q0,q1}q0

10
st

at
es

symbols

What will happen if at state q1

an input of 0 is received?

Why is this non-deterministic?

Regular expression: (0+1)*01(0+1)*

§ A DFA for recognizing the key word “while”

§ An NFA for the same purpose:

17

q0
w

q1
h

q2
i

q3
l

q4
e

q5

qerr

Any other input symbol

q0
w

q1
h

q2
i

q3
l

q4
e

q5

Any symbol

Note: Omitting to explicitly show error states is just a matter of design convenience
(one that is generally followed for NFAs), and
i.e., this feature should not be confused with the notion of non-determinism.

Transitions into a dead state are implicit

§ Build an NFA for the following language:
L = { w | w ends in 01}

§ Other examples
§ Keyword recognizer (e.g., if, then, else, while, for, include, etc.)
§ Strings where the first symbol is present somewhere later on at least

once

18

q0

start
q1

0

0,1

1
q2

Final
state

§Basis: δ (q,e) = {q}

§ Induction:
§ Let δ (q0,w) = {p1,p2…,pk}
§ δ (pi,a) = Si for i=1,2...,k

§ Then, δ (q0,wa) = S1 U S2 U … U Sk

19

§ An NFA accepts w if there exists at least one path from the start
state to an accepting (or final) state that is labeled by w

§ L(N) = { w | δ(q0,w) ∩ F ≠ Φ	}

20

§Great for modeling regular expressions
§ String processing - e.g., grep, lexical analyzer

§Could a non-deterministic state machine be
implemented in practice?
§ Probabilistic models could be viewed as extensions of non-

deterministic state machines
(e.g., toss of a coin, a roll of dice)
§ They are not the same though

§ A parallel computer could exist in multiple “states” at the same time

21

§ Micron’s Automata Processor (introduced in 2013)

§ 2D array of MISD (multiple instruction single data)
fabric w/ thousands to millions of processing
elements.

§ 1 input symbol = fed to all states (i.e., cores)

§ Non-determinism using circuits

§ http://www.micronautomata.com/

22

http://www.micronautomata.com/

§ DFA
1. All transitions are

deterministic
§ Each transition leads to

exactly one state

2. For each state, transition on
all possible symbols
(alphabet) should be defined

3. Accepts input if the last state
visited is in F

4. Sometimes harder to
construct because of the
number of states

5. Practical implementation is
feasible

§ NFA
1. Some transitions could be

non-deterministic
§ A transition could lead to a

subset of states

2. Not all symbol transitions
need to be defined explicitly
(if undefined will go to an
error state – this is just a
design convenience, not to
be confused with “non-
determinism”)

3. Accepts input if one of the
last states is in F

4. Generally easier than a DFA
to construct

5. Practical implementations
limited but emerging (e.g.,
Micron automata processor)

23

But, DFAs and NFAs are equivalent in their power to capture langauges !!

§ Theorem:
§ A language L is accepted by a DFA if and only if it is

accepted by an NFA.

§ Proof:
1. If part:

§ Prove by showing every NFA can be converted to an
equivalent DFA (in the next few slides…)

2. Only-if part is trivial:
§ Every DFA is a special case of an NFA where each state

has exactly one transition for every input symbol.
Therefore, if L is accepted by a DFA, it is accepted by a
corresponding NFA.

24

Should be
true for
any L

IF-PART

§ If-part: A language L is accepted by a DFA if
it is accepted by an NFA

§rephrasing…
§Given any NFA N, we can construct a DFA D

such that L(N)=L(D)
§How to convert an NFA into a DFA?

§ Observation: In an NFA, each transition maps to a
subset of states

§ Idea: Represent:
each “subset of NFA_states” è a single “DFA_state”

25Subset construction

§ Let N = {QN,∑,δN,q0,FN}
§ Goal: Build D={QD,∑,δD,{q0},FD} s.t.

L(D)=L(N)
§ Construction:

1. QD= all subsets of QN (i.e., power set)
2. FD=set of subsets S of QN s.t. S∩FN≠Φ
3. δD: for each subset S of QN and for each

input symbol a in ∑:
§ δD(S,a) = U δN(p,a)

26

p in s

§ L = {w | w ends in 01}

27

q0 q1
0

0,1

q2
1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

Ø Ø Ø

[q0] {q0,q1} {q0}

[q1] Ø {q2}

*[q2] Ø Ø

[q0,q1] {q0,q1} {q0,q2}

*[q0,q2] {q0,q1} {q0}

*[q1,q2] Ø {q2}

*[q0,q1,q2] {q0,q1} {q0,q2}

1. Determine transitions

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Idea: To avoid enumerating all of
power set, do
“lazy creation of states”

2. Retain only those states
reachable from {q0}

0. Enumerate all possible subsets

§ L = {w | w ends in 01}

28

q0 q1
0

0,1

q2
1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Main Idea:
Introduce states as you go
(on a need basis)

Theorem: If D is the DFA constructed from NFA N by subset
construction, then L(D)=L(N)

§ Proof:
§ Show that δD({q0},w) ≡ δN(q0,w} , for all w
§ Using induction on w’s length:

§ Let w = xa
§ δD({q0},xa) ≡ δD(δN(q0,x}, a) ≡ δN(q0,w}

29

§ L = {w | w is a binary string s.t., the kth symbol
from its end is a 1}

§ NFA has k+1 states

§ But an equivalent DFA needs to have at least 2k states

(Pigeon hole principle)
§ m holes and >m pigeons

§ => at least one hole has to contain two or more pigeons

30

§Text indexing
§ inverted indexing
§ For each unique word in the database, store all

locations that contain it using an NFA or a DFA

§Find pattern P in text T
§ Example: Google querying

§Extensions of this idea:
§ PATRICIA tree, suffix tree

31

§ The machine never really terminates.
§ It is always waiting for the next input symbol or making

transitions.

§ The machine decides when to consume the next symbol from
the input and when to ignore it.
§ (but the machine can never skip a symbol)

§ => A transition can happen even without really consuming an
input symbol (think of consuming e as a free token) – if this
happens, then it becomes an e-NFA (see next few slides).

§ A single transition cannot consume more than one (non-e)
symbol.

32

§We can allow explicit e-transitions in finite
automata
§ i.e., a transition from one state to another state without

consuming any additional input symbol
§ Explicit e-transitions between different states introduce

non-determinism.
§ Makes it easier sometimes to construct NFAs

Definition: e -NFAs are those NFAs with at least
one explicit e-transition defined.

§ e -NFAs have one more column in their transition
table

33

§e-closure of a state q,
ECLOSE(q), is the set of
all states (including
itself) that can be
reached from q by
repeatedly making an
arbitrary number of e-
transitions.

34

L = {w | w is empty, or if non-empty will end in 01}

δE 0 1 e
*q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

ECLOSE(q’0)

ECLOSE(q0)

start

q0 q1
0

0,1

1
q2

q’0

e

ECLOSE(q1)

ECLOSE(q2)

Simulate for w=101:

35

L = {w | w is empty, or if non-empty will end in 01}

δE 0 1 e
*q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

ECLOSE(q’0)

ECLOSE(q0)

start

q0 q1
0

0,1

1
q2

q’0

e q0’

q0q0’

ee

q1

0

q2

1

q0

1

Ø

1

x

To simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their e-closure states as well.

Simulate for w=101:
?

36

δE 0 1 e
*q’0 Ø Ø {q’0,q0,q3}

q0 {q0,q1} {q0} {q0,q3}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

q3 Ø {q2} {q3}

start

q0 q1
0

0,1

1
q2

q’0

e e

q3

1

To simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their e-closure states as well.

§ Theorem: A language L is accepted by some e-NFA if and
only if L is accepted by some DFA

§ Implication:
§ DFA ≡ NFA ≡ e-NFA
§ (all accept Regular Languages)

37

Let E = {QE,∑,δE,q0,FE} be an e-NFA
Goal: To build DFA D={QD,∑,δD,{qD},FD} s.t. L(D)=L(E)
Construction:

1. QD= all reachable subsets of QE factoring in e-closures
2. qD = ECLOSE(q0)
3. FD=subsets S in QD s.t. S∩FE≠Φ
4. δD: for each subset S of QE and for each input symbol

aÎ∑:
§ Let R= U δE(p,a) // go to destination states

§ δD(S,a) = U ECLOSE(r) // from there, take a union
of all their e-closures

38

p in s

r in R

Reading: Section 2.5.5 in book

39

L = {w | w is empty, or if non-empty will end in 01}

start

q0 q1
0

0,1

1
q2

q’0

e

δE 0 1 e
*q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

δD 0 1

*{q’0,q0}

…

40

L = {w | w is empty, or if non-empty will end in 01}

start

q0 q1
0

0,1

1
q2

q’0

e

δE 0 1 e
*q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

δD 0 1

*{q’0,q0} {q0,q1} {q0}

{q0,q1} {q0,q1} {q0,q2}

{q0} {q0,q1} {q0}

*{q0,q2} {q0,q1} {q0}

{q’0, q0}

0

start

{q0,q1}
{q0,q2}1

0

q0

1
1

0

0

1

unionECLOSE

§ DFA
§ Definition
§ Transition diagrams & tables

§ Regular language

§ NFA
§ Definition
§ Transition diagrams & tables

§ DFA vs. NFA

§ NFA to DFA conversion using subset construction

§ Equivalency of DFA & NFA

§ Removal of redundant states and including dead states

§ e-transitions in NFA

§ Pigeon hole principles

§ Text searching applications

41

