Pushdown Automata (PDA)

Reading: Chapter 6

Introduction

- Pushdown automata are used to determine what can be computed by machines.
- More capable than finite-state machines but less capable than Turing machines.
- A type of automaton that uses a stack.
- A pushdown automaton (PDA) differs from a finite state machine in two ways:
 - It can use the top of the stack to decide which transition to take.
 - It can manipulate the stack as part of performing a transition.

PDA - the automata for CFLs

- What is?
 - FA to Reg Lang, PDA is to CFL
- PDA == [ε-NFA + "a stack"]
- Why a stack?

PDA

- PDA reads a given input string from left to right.
- In each step, it chooses a transition by indexing a table by input symbol, current state, and the symbol at the top of the stack.
- A PDA can also manipulate the stack, as part of performing a transition.
 - The manipulation can be to push a particular symbol to the top of the stack
 - Pop off the top of the stack.
 - The automaton can alternatively ignore the stack, and leave it as it is.

DPDA & NPDA

- Given an input symbol, current state, and stack symbol, the automaton can follow a transition to another state, and optionally manipulate (push or pop) the stack.
 - If at most one such transition action is possible, then the automaton is called a deterministic pushdown automaton (DPDA).
 - If several actions are possible, then the automaton is called nondeterministic, (NPDA).
- In case of NPDA, if one of the action leads to an accepting state after reading the complete input string, then language is accepted by the automaton.

Pushdown Automata -Definition

• A PDA P := ($Q, \Sigma, \Gamma, \delta, q_0, Z_0, F$):

- Q: states of the ε-NFA
- ∑: input alphabet
- Γ : stack symbols
- δ: transition function
- q₀: start state
- Z₀: Initial stack top symbol
- F: Final/accepting states

old state input symb. Stack top

new state(s) new Stack top(s)

δ: The Transition Function

 $\delta(q,a,X) = \{(p,Y), ...\}$

Von-determinism

state transition from q to p

a is the next input symbol

X is the current stack *top* symbol

δ: Q x Σ x Γ => Q x Γ

Y is the replacement for X; it is in Γ^* (a string of stack symbols)

Set
$$Y = \varepsilon$$
 for: Pop(X)

- If Y=X: stack top is ii. unchanged
- If $Y=Z_1Z_2...Z_k$: X is popped iii. and is replaced by Y in reverse order (i.e., Z_1 will be the new stack top)

	Y = ?	Action
i)	Y=ε	Pop(X)
ii)	Y=X	Pop(X) Push(X)
iii)	Y=Z ₁ Z ₂ Z _k	Pop(X) $Push(Z_k)$ $Push(Z_{k-1})$
		 Push(Z ₂) Push(Z ₁)

Example

Let $L_{wwr} = \{ww^{R} | w \text{ is in } (0+1)^{*}\}$

- CFG for L_{wwr} : S==> 0S0 | 1S1 | ε
- PDA for L_{wwr} :
- $P := (Q, \sum, \Gamma, \delta, q_0, Z_0, F)$
 - $= (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})$

Initial state of the PDA:

1.	$\delta(q_0,0, Z_0) = \{(q_0,0Z_0)\}$
2.	$\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$

PDA for Lww

First symbol push on stack

- 3. $\delta(q_0, 0, 0) = \{(q_0, 00)\}$
- 4. $\delta(q_0, 0, 1) = \{(q_0, 01)\}$
- 5. $\delta(q_0, 1, 0) = \{(q_0, 10)\}$ 6. $\delta(q_0, 1, 1) = \{(q_0, 11)\}$
 - $O(\mathbf{q}_0, \mathbf{1}, \mathbf{1}) \{(\mathbf{q}_0, \mathbf{1}, \mathbf{1})\}$
- 7. $\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$
- 8. $\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$ 9. $\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$
- $O(\mathbf{q}_0, \varepsilon, \mathbf{z}_0) \{(\mathbf{q}_1, \mathbf{z}_0)\}$

10. $\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}$

11. $\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$

12.
$$\delta(\mathbf{q_1}, \epsilon, Z_0) = \{(\mathbf{q_2}, Z_0)\}$$

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode, nondeterministically (boundary between w and w^R)

Shrink the stack by popping matching symbols (w^R-part)

Enter acceptance state

PDA as a state diagram

 $\delta(q_i,a, X) = \{(q_j,Y)\}$

This would be a non-deterministic PDA

PDA's Instantaneous Description (ID)

A PDA has a configuration at any given instance: (q,w,y)

- q current state
- w remainder of the input (i.e., unconsumed part)
- y current stack contents as a string from top to bottom of stack

If $\delta(q,a, X) = \{(p, A)\}$ is a transition, then the following are also true:

- (q, a, X) |--- (p,ε,A)
- q, aw, XB) |--- (p,w,AB)
- --- sign is called a "turnstile notation" and represents one move
- |---* sign represents a sequence of moves

How does the PDA for L_{wwr} work on input "1111"?

There are two types of PDAs that one can design: those that accept by final state or by empty stack

Acceptance by...

PDAs that accept by final state:

 For a PDA P, the language accepted by P, denoted by L(P) by *final state*, is: Checklist:

• {w | (q_0, w, Z_0) |---* (q, ε, A) }, s.t., $q \in F$

- input exhausted?
- in a final state?

PDAs that accept by <u>empty stack</u>:

 For a PDA P, the language accepted by P, denoted by N(P) by *empty stack*, is:

• {w | (q_0, w, Z_0) |---* $(q, \varepsilon, \varepsilon)$ }, for any $q \in Q$.

Q) Does a PDA that accepts by empty stack **Checklist:** - input exhausted? need any final state specified in the design?

15 - is the stack empty?

Example: L of balanced parenthesis

How will these two PDAs work on the input: ((())()) ()

PDAs accepting by final state and empty stack are <u>equivalent</u>

- P_F <= PDA accepting by final state
 P_F = (Q_F, Σ, Γ, δ_F, q₀, Z₀, F)
- P_N <= PDA accepting by empty stack
 P_N = (Q_N, Σ, Γ, δ_N, q₀, Z₀)
- Theorem:
 - $(P_N = P_F)$ For every P_N , there exists a P_F s.t. $L(P_F) = L(P_N)$

• $(P_F ==> P_N)$ For every P_F , there exists a P_N s.t. $L(P_F) = L(P_N)$

How to convert an empty stack PDA into a final state PDA?

$P_N == P_F$ construction

- Whenever P_N's stack becomes empty, make P_F go to a final state without consuming any addition symbol
- To detect empty stack in P_N : P_F pushes a new stack symbol X_0 (not in Γ of P_N) initially before simultating P_N

Example: Matching parenthesis "(" ")"

How to convert an final state PDA into an empty stack PDA?

P_F==> P_N construction

- Main idea:
 - Whenever P_F reaches a final state, just make an ϵ -transition into a new end state, clear out the stack and accept
 - Danger: What if P_F design is such that it clears the stack midway without entering a final state?

 \rightarrow to address this, add a new start symbol X₀ (not in Γ of P_F)

 $P_{N} = (Q \cup \{p_{0}, p_{e}\}, \sum, \Gamma \cup \{X_{0}\}, \delta_{N}, p_{0}, X_{0})$

Equivalence of PDAs and CFGs

CFGs == PDAs ==> CFLs

This is same as: "implementing a CFG using a PDA"

Converting CFG to PDA

<u>Main idea:</u> The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by <u>empty stack</u>) or non-acceptance.

Converting a CFG into a PDA

<u>Main idea:</u> The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by <u>empty stack</u>) or non-acceptance.

Steps:

- Push the right hand side of the production onto the stack, with leftmost symbol at the stack top
 - 2. If stack top is the leftmost variable, then replace it by all its productions (each possible substitution will represent a <u>distinct</u> path taken by the non-deterministic PDA)
 - 3. If stack top has a terminal symbol, and if it matches with the next symbol in the input string, then pop it

State is inconsequential (only one state is needed)

- → a
- For all a ∈ T, add the following transition(s) in the PDA:
 - δ(q,a,a)= { (q, ε) }

pop

Example: CFG to PDA

- G = ({S,A}, {0,1}, P, S)
- P:

- PDA = ({q}, {0,1}, {0,1,A,S}, δ, q, S)
 Σ.
- δ:
 - δ(q, ε, S) = { (q, AS), (q, ε)}
 - $\delta(q, \epsilon, A) = \{ (q, 0A1), (q, A1), (q, 01) \}$
 - $\delta(q, 0, 0) = \{ (q, \varepsilon) \}$
 - $\delta(q, 1, 1) = \{ (q, \epsilon) \}$

How will this new PDA work? Lets simulate string 0011

1,1/ε

0,0 / ε ε,Α / 01 ε,Α / Α1

ε,Α/ 0Α1 ε,S / ε ε,<u>S</u> / AS

ε,S/S

Converting a PDA into a CFG

- <u>Main idea</u>: Reverse engineer the productions from transitions
- If $\delta(q,a,Z) \Rightarrow (p, Y_1Y_2Y_3...Y_k)$:
 - State is changed from q to p;
 - 2. Terminal *a* is consumed;
 - 3. Stack top symbol Z is popped and replaced with a sequence of k variables.
 - <u>Action</u>: Create a grammar variable called "[qZp]" which includes the following production:
 - $[qZp] \Rightarrow a[pY_1q_1] [q_1Y_2q_2] [q_2Y_3q_3] \dots [q_{k-1}Y_kq_k]$
 - Proof discussion (in the book)

Example: Bracket matching

To avoid confusion, we will use b="(" and e=")"

Deterministic PDAs

This PDA for L_{wwr} is non-deterministic

Deterministic PDA: Definition

- A PDA is *deterministic* if and only if:
 - 1. $\delta(q,a,X)$ has at most one member for any $a \in \sum U \{\epsilon\}$
- → If $\delta(q,a,X)$ is non-empty for some $a \in \Sigma$, then $\delta(q, ε,X)$ must be empty.

PDA vs DPDA vs Regular languages

Summary

PDAs for CFLs and CFGs

- Non-deterministic
- Deterministic
- PDA acceptance types
 - 1. By final state
 - 2. By empty stack
- PDA
 - IDs, Transition diagram
- Equivalence of CFG and PDA
 - CFG => PDA construction
 - PDA => CFG construction