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Pushdown Automata (PDA)
Reading: Chapter 6



Introduction
n Pushdown automata are used to determine what can 

be computed by machines. 
n More capable than finite-state machines but less 

capable than Turing machines.
n A type of automaton that uses a stack.
n A pushdown automaton (PDA) differs from a finite 

state machine in two ways:
n It can use the top of the stack to decide which transition to take.
n It can manipulate the stack as part of performing a transition.
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PDA - the automata for CFLs
n What is?

n FA to Reg Lang, PDA is to CFL
n PDA == [ e -NFA + “a stack” ]
n Why a stack?

e-NFA

A stack filled with “stack symbols”

Input
string

Accept/reject



PDA
n PDA reads a given input string from left to right. 
n In each step, it chooses a transition by indexing a table by input 

symbol, current state, and the symbol at the top of the stack. 
n A PDA can also manipulate the stack, as part of performing a transition. 

n The manipulation can be to push a particular symbol to the top of the stack
n Pop off the top of the stack. 
n The automaton can alternatively ignore the stack, and leave it as it is.
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DPDA & NPDA
n Given an input symbol, current state, and stack symbol, the 

automaton can follow a transition to another state, and 
optionally manipulate (push or pop) the stack.
n If at most one such transition action is possible, then the automaton is 

called a deterministic pushdown automaton (DPDA). 
n If several actions are possible, then the automaton is called 

nondeterministic, (NPDA). 

n In case of NPDA, if one of the action leads to an accepting state 
after reading the complete input string, then language is 
accepted by the automaton.
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Pushdown Automata -
Definition
n A PDA P := ( Q,∑,G, δ,q0,Z0,F ):

n Q: states of the e-NFA
n ∑: input alphabet
n G : stack symbols 
n δ: transition function
n q0: start state
n Z0: Initial stack top symbol
n F: Final/accepting states



δ : The Transition Function
δ(q,a,X) = {(p,Y), …} 

1. state transition from q to p
2. a is the next input symbol
3. X is the current stack top symbol
4. Y is the replacement for X;

it is in G* (a string of stack 
symbols)

i. Set Y = e for: Pop(X) 
ii. If Y=X: stack top is 

unchanged
iii. If Y=Z1Z2…Zk: X is popped 

and is replaced by Y in 
reverse order (i.e., Z1 will be 
the new stack top)
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No
n-

de
te

rm
ini

sm

old state Stack top input symb. new state(s) new Stack top(s)

δ : Q x ∑ x  G => Q x G

q
a X

p
Y

Y = ? Action

i) Y=e Pop(X)

ii) Y=X Pop(X)
Push(X)

iii) Y=Z1Z2..Zk Pop(X)
Push(Zk)
Push(Zk-1)
…
Push(Z2)
Push(Z1)
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Example
Let Lwwr = {wwR | w is in (0+1)*}
n CFG for Lwwr : S==> 0S0 | 1S1 | e
n PDA for Lwwr :
n P := ( Q,∑, G, δ,q0,Z0,F ) 

= ( {q0, q1, q2},{0,1},{0,1,Z0},δ,q0,Z0,{q2})
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PDA for Lwwr
1. δ(q0,0, Z0)={(q0,0Z0)}
2. δ(q0,1, Z0)={(q0,1Z0)}

3. δ(q0,0, 0)={(q0,00)}
4. δ(q0,0, 1)={(q0,01)}
5. δ(q0,1, 0)={(q0,10)}
6. δ(q0,1, 1)={(q0,11)}

7. δ(q0, e, 0)={(q1, 0)}
8. δ(q0, e, 1)={(q1, 1)}
9. δ(q0, e, Z0)={(q1, Z0)}

10. δ(q1,0, 0)={(q1, e)}
11. δ(q1,1, 1)={(q1, e)}

12. δ(q1, e, Z0)={(q2, Z0)}

First symbol push on stack

Grow the stack by pushing 
new symbols on top of old
(w-part)

Switch to popping mode, nondeterministically
(boundary between w and wR)

Shrink the stack by popping matching 
symbols (wR-part)

Enter acceptance state

Z0

Initial state of the PDA:

q0Stack
top
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PDA as a state diagram

qi qj

a, X   /  Y 

Next 
input 
symbolCurrent

state

Current
stack
top

Stack
Top
Replacement
(w/ string Y)

Next
state

δ(qi,a, X)={(qj,Y)}



11

PDA for Lwwr: Transition Diagram

q0 q1 q2

0, Z0/0Z0
1, Z0/1Z0
0, 0/00
0, 1/01
1, 0/10
1, 1/11

0, 0/ e
1, 1/ e

e, Z0/Z0

e, 0/0 
e, 1/1 

e, Z0/Z0

Grow stack

Switch to
popping mode

Pop stack for 
matching symbols

Go to acceptance

∑ = {0, 1}
G= {Z0, 0, 1}
Q = {q0,q1,q2}

e, Z0/Z0

This would be a non-deterministic PDA
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PDA’s Instantaneous 
Description (ID)
A PDA has a configuration at any given instance: 

(q,w,y)
n q - current state
n w - remainder of the input (i.e., unconsumed part)
n y - current stack contents as a string from top to bottom 

of stack
If δ(q,a, X)={(p, A)} is a transition, then the following are also true:

n (q, a, X ) |--- (p,e,A)
n (q, aw, XB ) |--- (p,w,AB)

|--- sign is called a “turnstile notation” and represents 
one move

|---* sign represents a sequence of moves
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How does the PDA for Lwwr
work on input “1111”?

(q0,1111,Z0)

(q0,111,1Z0)

(q0,11,11Z0)

(q0,1,111Z0)

(q0,e,1111Z0)

(q1, e,1111Z0) (q1, e,11Z0)

(q1,1,111Z0)

(q1,11,11Z0)

(q1,111,1Z0)

(q1,1111,Z0) Path dies…

Path dies…

(q1,1,1Z0)

(q1, e,Z0)

(q2, e,Z0)

Acceptance by 
final state:

= empty input
AND
final state

All moves made by the non-deterministic PDA

Path dies…Path dies…
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Acceptance by…
n PDAs that accept by final state:

n For a PDA P, the language accepted by P, 
denoted by L(P) by final state, is:

n {w | (q0,w,Z0) |---* (q,e, A) }, s.t., q Î F 

n PDAs that accept by empty stack:
n For a PDA P, the language accepted by P, 

denoted by N(P) by empty stack, is:
n {w | (q0,w,Z0) |---* (q, e, e) }, for any q Î Q. 

Checklist:
- input exhausted?
- in a final state?

Checklist:
- input exhausted?
- is the stack empty?

There are two types of PDAs that one can design: 
those that accept by final state or by empty stack

Q) Does a PDA that accepts by empty stack
need any final state specified in the design?



Example: L of balanced 
parenthesis
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q0

(,Z0 / ( Z0
(,( / ( (
), ( / e

start
q1

e,Z0/ Z0

e,Z0/ Z0

PDA that accepts by final state

q0

start

(,Z0 / ( Z0
(, ( / ( (
), ( / e
e,Z0 / e

An equivalent PDA that 
accepts by empty stack

e,Z0/ Z0

PF: PN:

How will these two PDAs work on the input: ( ( ( ) ) ( ) )  ( ) 
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PDAs accepting by final state and empty 
stack are equivalent

n PF <= PDA accepting by final state
n PF = (QF,∑, G, δF,q0,Z0,F)

n PN <= PDA accepting by empty stack
n PN = (QN,∑, G, δN,q0,Z0)

n Theorem:
n (PN==> PF) For every PN, there exists a PF s.t. L(PF)=L(PN)

n (PF==> PN) For every PF, there exists a PN s.t. L(PF)=L(PN)
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PN==> PF construction
n Whenever PN’s stack becomes empty, make PF go to 

a final state without consuming any addition symbol
n To detect empty stack in PN: PF pushes a new stack 

symbol X0 (not in G of PN) initially before simultating 
PN

q0 … pfp0

e, X0/Z0X0New 
start

e, X0/ X0
e, X0/ X0

e, X0/ X0

e, X0/  X0

PN

PF:

PF = (QN U {p0,pf}, ∑, G U {X0}, δF, p0, X0, {pf})

PN:

e, X0 / X0

How to convert an empty stack PDA into a final state PDA?



20

Example: Matching parenthesis “(” “)”

PN: ( {q0}, {(,)}, {Z0,Z1}, δN, q0, Z0 )

δN: δN(q0,(,Z0) = { (q0,Z1Z0) }
δN(q0,(,Z1) = { (q0, Z1Z1) }
δN(q0,),Z1) = { (q0, e) }

δN(q0, e,Z0) = { (q0, e) }

q0

start

(,Z0 /Z1Z0
(,Z1 /Z1Z1
),Z1 / e
e,Z0 / e

q0

(,Z0/Z1Z0
(,Z1/Z1Z1
),Z1/ e
e ,Z0/ e

start
p0 pf
e,X0/Z0X0 e,X0/ X0 

Pf: ( {p0,q0 ,pf}, {(,)}, {X0,Z0,Z1}, δf, p0, X0 , pf)

δf: δf(p0, e,X0) = { (q0,Z0) }
δf(q0,(,Z0) = { (q0,Z1 Z0) }
δf(q0,(,Z1) = { (q0, Z1Z1) }
δf(q0,),Z1) = { (q0, e) }
δf(q0, e,Z0) = { (q0, e) }
δf(p0, e,X0) = { (pf, X0 ) }

Accept by empty stack Accept by final state
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PF==> PN construction
n Main idea:

n Whenever PF reaches a final state, just make an e -transition into a 
new end state, clear out the stack and accept

n Danger: What if PF design is such that it clears the stack midway 
without entering a final state?

è to address this, add a new start symbol X0 (not in G of PF)  

PN = (Q U {p0,pe}, ∑, G U {X0}, δN, p0, X0)

p0

e, X0/Z0X0New 
start

e, any/ e
e, any/ e

e, any/ e

q0 … pe

e, any/ e

PF

PN:

How to convert an final state PDA into an empty stack PDA?
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Equivalence of PDAs and 
CFGs
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CFGs == PDAs ==> CFLs

CFG

PDA by 
final state

PDA by
empty stack

?

≡
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Converting CFG to PDA
Main idea: The PDA simulates the leftmost derivation on a given 

w, and upon consuming it fully it either arrives at acceptance (by 
empty stack) or non-acceptance.

This is same as: “implementing a CFG using a PDA”

PDA
(acceptance 
by empty 
stack)

CFG

w
accept

reject

implements

IN
PU

T

O
U

TP
U

T
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Converting a CFG into a PDA
Main idea: The PDA simulates the leftmost derivation on a given w, 

and upon consuming it fully it either arrives at acceptance (by 
empty stack) or non-acceptance.

Steps:
1. Push the right hand side of the production onto the stack, 

with leftmost symbol at the stack top
2. If stack top is the leftmost variable, then replace it by all its 

productions (each possible substitution will represent a 
distinct path taken by the non-deterministic PDA)

3. If stack top has a terminal symbol, and if it matches with the 
next symbol in the input string, then pop it 

State is inconsequential (only one state is needed)

This is same as: “implementing a CFG using a PDA”
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Formal construction of PDA 
from CFG
n Given: G= (V,T,P,S)
n Output: PN = ({q}, T, V U T, δ, q, S)
n δ:

n For all A Î V , add the following 
transition(s) in the PDA:

n δ(q, e ,A) = { (q, a) | “A ==>a” Î P}
n For all a Î T, add the following 

transition(s) in the PDA:
n δ(q,a,a)= { (q, e ) } 

A

Before:

…

a

Before:

…

a

After:

…

a

After:

…

Note: Initial stack symbol (S)
same as the start variable
in the grammar

pop

a…
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Example: CFG to PDA
n G = ( {S,A}, {0,1}, P, S)
n P: 

n S ==> AS | e
n A ==> 0A1 | A1 | 01

n PDA = ({q}, {0,1}, {0,1,A,S}, δ, q, S)
n δ: 

n δ(q, e , S) = { (q, AS), (q, e )}
n δ(q, e , A) = { (q,0A1), (q,A1), (q,01) }
n δ(q, 0, 0) = { (q, e ) }
n δ(q, 1, 1) = { (q, e ) } How will this new PDA work?

Lets simulate string 0011

q
e,S / S

1,1 / e
0,0 / e
e,A / 01
e,A / A1
e,A / 0A1
e,S / e
e,S / AS



Simulating string 0011 on the 
new PDA …

28

PDA (δ): 
δ(q, e , S) = { (q, AS), (q, e )}
δ(q, e , A) = { (q,0A1), (q,A1), (q,01) }
δ(q, 0, 0) = { (q, e ) }
δ(q, 1, 1) = { (q, e ) }

S

Stack moves (shows only the successful path):

S
A

S
1
A
0

S
1
A

0

S
1
1
0

S
1
1

0
S
1

1
S

1 e

Accept by 
empty stack

q
e,S / S

1,1 / e
0,0 / e
e,A / 01
e,A / A1
e,A / 0A1
e,S / e
e,S / AS

S => AS
=> 0A1S
=> 0011S
=> 0011

Leftmost deriv.:

S          =>AS  =>0A1S     =>0011S                            => 0011
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Converting a PDA into a CFG
n Main idea: Reverse engineer the 

productions from transitions
If δ(q,a,Z) => (p, Y1Y2Y3…Yk):

1. State is changed from q to p;
2. Terminal a is consumed;
3. Stack top symbol Z is popped and replaced with a 

sequence of k variables. 

n Action: Create a grammar variable called 
“[qZp]” which includes the following 
production:

n [qZp] => a[pY1q1] [q1Y2q2] [q2Y3q3]… [qk-1Ykqk]

n Proof discussion (in the book)
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Example: Bracket matching
n To avoid confusion, we will use b=“(“ and  e=“)”

PN: ( {q0}, {b,e}, {Z0,Z1}, δ, q0, Z0 )

1. δ(q0,b,Z0) = { (q0,Z1Z0) }
2. δ(q0,b,Z1) = { (q0,Z1Z1) }
3. δ(q0,e,Z1) = { (q0, e ) }

4. δ(q0, e ,Z0) = { (q0, e ) }

0. S => [q0Z0q0]
1. [q0Z0q0] => b [q0Z1q0] [q0Z0q0]
2. [q0Z1q0] => b [q0Z1q0] [q0Z1q0]
3. [q0Z1q0] => e
4. [q0Z0q0] => e

Let A=[q0Z0q0]
Let B=[q0Z1q0]

0. S => A
1. A => b B A
2. B => b B B
3. B => e
4. A => e

Simplifying, 

0. S => b B S | e
1. B => b B B | e

If you were to directly write a CFG:

S => b S e S | e
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Two ways to build a CFG

Build a PDA Construct
CFG from PDA

Derive CFG directly

Derive a CFG Construct
PDA from CFG

Design a PDA directly

Similarly…

(indirect)

(direct)

(indirect)

(direct)

Two ways to build a PDA
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Deterministic PDAs
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This PDA for Lwwr is non-deterministic

q0 q1 q2

0, Z0/0Z0
1, Z0/1Z0
0, 0/00
0, 1/01
1, 0/10
1, 1/11

0, 0/ e
1, 1/ e

e, Z0/Z0
e, 0/0 
e, 1/1 

e, Z0/Z0

Grow stack

Switch to
popping mode

Pop stack for 
matching symbols

Accepts by final state

Why does it have 
to be non-
deterministic?

To remove 
guessing, 
impose the user 
to insert c in the 
middle
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D-PDA for Lwcwr = {wcwR | c is some 
special symbol not in w}

q0 q1 q2

0, Z0/0Z0
1, Z0/1Z0
0, 0/00
0, 1/01
1, 0/10
1, 1/11

0, 0/ e
1, 1/ e

c, Z0/Z0
c, 0/0 
c, 1/1 

e, Z0/Z0

Grow stack

Switch to
popping mode

Pop stack for 
matching symbols

Accepts by
final state

Note:
• all transitions have 
become 
deterministic

Example shows that: Nondeterministic PDAs ≠ D-PDAs
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Deterministic PDA: Definition
n A PDA is deterministic if and only if:

1. δ(q,a,X) has at most one member for any 
a Î ∑ U {e}

è If δ(q,a,X) is non-empty for some aÎ∑, 
then δ(q, e,X) must be empty.
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PDA vs DPDA vs Regular 
languages

Regular languages D-PDA

non-deterministic PDA

LwwrLwcwr
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Summary
n PDAs for CFLs and CFGs

n Non-deterministic
n Deterministic

n PDA acceptance types
1. By final state
2. By empty stack 

n PDA
n IDs, Transition diagram

n Equivalence of CFG and PDA 
n CFG => PDA construction
n PDA => CFG construction


