Properties of Context-free Languages

Reading: Chapter 7

Topics

1) Simplifying CFGs, Normal forms
2) Pumping lemma for CFLs
3) Closure and decision properties of CFLs

How to "simplify" CFGs?

Three ways to simplify/clean a CFG

(clean)

1. Eliminate useless symbols
(simplify)
2. Eliminate ε-productions

3. Eliminate unit productions
$A \neq B$

Eliminating useless symbols

Grammar cleanup

Eliminating useless symbols

A symbol X is reachable if there exists:

- $S \rightarrow{ }^{*} \alpha X \beta$

A symbol X is generating if there exists:

- $X \rightarrow{ }^{*} w$,
- for some $w \in T^{*}$

For a symbol X to be "useful", it has to be both reachable and generating

$$
\begin{aligned}
& \text { - } S \rightarrow^{*} \alpha X \beta \rightarrow^{*} w^{\prime}, \quad \text { for some } w^{\prime} \in T^{*} \\
& \text { reachable generating }
\end{aligned}
$$

Algorithm to detect useless symbols

1. First, eliminate all symbols that are not generating
2. Next, eliminate all symbols that are not reachable

Is the order of these steps important, or can we switch?

Example: Useless symbols

- $S \rightarrow A B \mid a$
- $A \rightarrow b$

1. A, S are generating
2. $\quad B$ is not generating (and therefore B is useless)
3. ==> Eliminating B... (i.e., remove all productions that involve B)
4. $S \rightarrow a$
5. $A \rightarrow b$
6. Now, A is not reachable and therefore is useless
7. Simplified G:

What would happen if you reverse the order: 1. $S \rightarrow a$

$X \rightarrow{ }^{*} w$

Algorithm to find all generating symbols

- Given: $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
- Basis:
- Every symbol in T is obviously generating.
- Induction:
- Suppose for a production $\mathrm{A} \rightarrow \alpha$, where α is generating
- Then, A is also generating

$S \rightarrow * \alpha X$

Algorithm to find all reachable symbols

- Given: $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
- Basis:
- S is obviously reachable (from itself)
- Induction:
- Suppose for a production $\mathrm{A} \rightarrow \alpha_{1} \alpha_{2} \ldots \alpha_{\mathrm{k}}$, where A is reachable
- Then, all symbols on the right hand side, $\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{k}\right\}$ are also reachable.

Eliminating ε-productions

$$
\begin{gathered}
A=>\varepsilon \\
X
\end{gathered}
$$

What's the point of removing ε-productions?

$$
A \Rightarrow \varepsilon
$$

Eliminating ε-productions

Caveat: It is not possible to eliminate ε-productions for languages which include ε in their word set
So we will target the grammar for the rest of the language Theorem: If $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ is a CFG for a language L , then $L \backslash\{\varepsilon\}$ has a CFG without ε-productions

Definition: A is "nullable" if $A \rightarrow * \varepsilon$

- If A is nullable, then any production of the form " $B \rightarrow C A D$ " can be simulated by:
- $B \rightarrow C D \mid C A D$
- This can allow us to remove ε transitions for A

Algorithm to detect all nullable variables

- Basis:
- If $A \rightarrow \varepsilon$ is a production in G, then A is nullable
(note: A can still have other productions)
- Induction:
- If there is a production $B \rightarrow C_{1} C_{2} \ldots C_{k}$, where every C_{i} is nullable, then B is also nullable

Eliminating ε-productions

Given: $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
Algorithm:

1. Detect all nullable variables in G
2. Then construct $\mathrm{G}_{1}=\left(\mathrm{V}, \mathrm{T}, \mathrm{P}_{1}, \mathrm{~S}\right)$ as follows:
i. For each production of the form: $A \rightarrow X_{1} X_{2} \ldots X_{k}$, where $k \geq 1$, suppose m out of the $k X_{i}$'s are nullable symbols Then G_{1} will have 2^{m} versions for this production
i.e, all combinations where each X_{i} is either present or absent
ii. Alternatively, if a production is of the form: $\mathrm{A} \rightarrow \varepsilon$, then remove it

Example: Eliminating ε productions

- Let L be the language represented by the following CFG G:

| i. | | $S \rightarrow A B$ |
| ---: | :--- | ---: | :--- |
| ii. | | $A \rightarrow a A A \mid \varepsilon$ |
| | | $B \rightarrow b B B \mid \varepsilon$ |

Goal: To construct $G 1$, which is the grammar for $L-\{\varepsilon\}$

Simplified grammar

- Nullable symbols: $\{A, B\}$
- $\quad \mathrm{G}_{1}$ can be constructed from G as follows: $\mathrm{B} \rightarrow \mathrm{b}|\mathrm{bB}| \mathrm{bB} \mid \mathrm{bBB}$
- $==>\quad B \rightarrow b|b B| b B B$
- Similarly, $A \rightarrow a|a A| a A A$
- Similarly, $S \rightarrow A|B| A B$
- \quad Note: $\mathrm{L}(\mathrm{G})=\mathrm{L}\left(\mathrm{G}_{1}\right) \cup\{\varepsilon\}$

Eliminating unit productions

$A=>B<B$ has to be a variable X

What's the point of removing unit transitions ?
Will save \#substitutions

$$
\begin{aligned}
& \text { E.g., } \begin{array}{l}
A=>B \mid \ldots \\
B=>C \mid \ldots \\
C=>D \mid \ldots \\
D=>x x x|y y y| z z z
\end{array} \quad \square . \begin{array}{l}
A=>x x x|y y y| z z z \mid \ldots \\
B=>x x x|y y y| z z z \mid \ldots \\
C=>x x x|y y y| z z z \mid \ldots \\
D=>x x x|y y y| z z z
\end{array} \\
& \text { before } \\
& \text { after }
\end{aligned}
$$

$A \rightarrow B$

Eliminating unit productions

- Unit production is one which is of the form $A \rightarrow B$, where both A \& B are variables
- E.g.,

```
E T T | E+T
T->F|T*F
F->||(E)
I }->\mathrm{ a | b | la|lb|IO|I1
```

- How to eliminate unit productions?
- Replace $E \rightarrow T$ with $E \rightarrow F \mid T * F$
- Then, upon recursive application wherever there is a unit production:

```
\(\mathrm{E} \rightarrow \mathrm{F}\left|\mathrm{T}^{*} \mathrm{~F}\right| \mathrm{E}+\mathrm{T}\)
- \(E \rightarrow I|(E)| T^{*} F \mid E+T\)
- \(\quad \mathrm{E} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{la}|\mathrm{lb}| \mathrm{IO}|\mathrm{I}| \mathrm{C}(\mathrm{E})\left|\mathrm{T}^{*} \mathrm{~F}\right| \mathrm{E}+\mathrm{T}\)
- Now, E has no unit productions
```

(substituting for T)
(substituting for F)

- Similarly, eliminate for the remainder of the unit productions

The Unit Pair Algorithm: to remove unit productions

- Suppose $A \rightarrow B_{1} \rightarrow B_{2} \rightarrow \ldots \rightarrow B_{n} \rightarrow \alpha$
- Action: Replace all intermediate productions to produce α directly
- i.e., $A \rightarrow \alpha ; B_{1} \rightarrow \alpha ; \ldots B_{n} \rightarrow \alpha$;

Definition: (A, B) to be a "unit pair" if $A \rightarrow{ }^{*} B$

- We can find all unit pairs inductively:
- Basis: Every pair (A,A) is a unit pair (by definition). Similarly, if $A \rightarrow B$ is a production, then (A, B) is a unit pair.
- Induction: If (A, B) and (B, C) are unit pairs, and $A \rightarrow C$ is also a unit pair.

The Unit Pair Algorithm: to remove unit productions

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
Goal: to build $\mathrm{G}_{1}=\left(\mathrm{V}, \mathrm{T}, \mathrm{P}_{1}, \mathrm{~S}\right)$ devoid of unit productions
Algorithm:

1. Find all unit pairs in G
2. For each unit pair (A, B) in G :
3. Add to P_{1} a new production $\mathrm{A} \rightarrow \alpha$, for every $B \rightarrow \alpha$ which is a non-unit production
4. If a resulting production is already there in P, then there is no need to add it.

Example: eliminating unit productions

	G.	Unit pairs	Only non-unit productions to be added to P_{1}
	1. $\mathrm{E} \rightarrow \mathrm{T}$	(E,E)	$E \rightarrow E+T$
	2. $\quad \mathrm{T} \rightarrow \mathrm{FIT} \mathrm{F}$	(E,T)	$\mathrm{E} \rightarrow \mathrm{T}$ - F
		(E,F)	$E \rightarrow$ (E)
		(E,I)	$\mathrm{E} \rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{la}\|\mathrm{lb}\| 10 \mid 11$
		(T,T)	$\mathrm{T} \rightarrow \mathrm{T}^{\text {¢ }} \mathrm{F}$
		(T,F)	$\mathrm{T} \rightarrow$ (E)
$\underline{\mathrm{G}}_{1}:$		(T,I)	$\mathrm{T} \rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{la}\|\mathrm{lb}\| 10 \mid 11$
1.	$E \rightarrow E+T\left\|T^{*} F\right\|(E)\|a\| b\|l a\| l b\|10\| 11$	(F,F)	$F \rightarrow$ (E)
$\begin{aligned} & 2 . \\ & 3 . \\ & 4 . \end{aligned}$	$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~F}\|(\mathrm{E})\| \mathrm{a}\|\mathrm{b}\| \mathrm{la}\|\mathrm{lb}\| \mathrm{IO} \mid \mathrm{I}$ $\mathrm{F} \rightarrow(\mathrm{E})\|\mathrm{a}\| \mathrm{b}\|\mathrm{la}\| \mathrm{lb}\|\mathrm{IO}\| \mathrm{II}$ $\mathrm{I} \rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{la\|lb\|l\|l\|}$	(F,I)	$\begin{aligned} & \mathrm{F} \rightarrow \mathrm{a}\|\mathrm{bl}\| \mathrm{la}\|\mathrm{lb}\| \mathrm{IO} \mid \\ & \mathrm{l} 1 \end{aligned}$
		(I,I)	$\left\lvert\, \begin{array}{ll} \mathrm{l} \rightarrow \mathrm{a}\|\mathrm{~b}\| \mathrm{la}\|\mathrm{lb}\| \mathrm{IO} \mid \\ \mathrm{If} \end{array}\right.$

Putting all this together...

- Theorem: If G is a CFG for a language that contains at least one string other than ε, then there is another CFG G_{1}, such that $L\left(\mathrm{G}_{1}\right)=\mathrm{L}(\mathrm{G})-\varepsilon$, and G_{1} has:
- no ε-productions
- no unit productions
- no useless symbols
- Algorithm:

Step 1) eliminate ε-productions
Step 2) eliminate unit productions
Step 3) eliminate useless symbols

Again, the order is important!

Why?

Normal Forms

Why normal forms?

If all productions of the grammar could be expressed in the same form(s), then:
a. It becomes easy to design algorithms that use the grammar
b. It becomes easy to show proofs and properties

Chomsky Normal Form (CNF)

Let G be a CFG for some $\mathrm{L}-\{\varepsilon\}$
Definition:
G is said to be in Chomsky Normal Form if all its productions are in one of the following two forms:

$$
\begin{array}{ll}
\text { i. } A>B C & \\
\text { i. } \begin{array}{ll}
\text { where } A, B, C \text { are variables, or } \\
\text { i. } & \Rightarrow a
\end{array} & \text { where } a \text { is a terminal }
\end{array}
$$

- G has no useless symbols
- G has no unit productions
- G has no e-productions

CNF checklist

Is this grammar in CNF?

Checklist:

- G has no ε-productions
- G has no unit productions
- G has no useless symbols
- But...
- the normal form for productions is violated
\Longrightarrow So, the grammar is not in CNF

How to convert a G into CNF?

Assumption: G has no ε-productions, unit productions or useless symbols
1)

For every terminal a that appears in the body of a production: create a unique variable, say X_{a}, with a production $X_{a} \rightarrow a$, and replace all other instances of a in G by X_{a}
2) Now, all productions will be in one of the following two forms:

- $A \rightarrow B_{1} B_{2} \ldots B_{k}(k \geq 3) \quad$ or $\quad A \rightarrow a$

3) Replace each production of the form $A \rightarrow B_{1} B_{2} B_{3} \ldots B_{k}$ by:

$$
\mathrm{B}_{1} \stackrel{\mathrm{~B}_{2}}{\longleftrightarrow \mathrm{C}_{2}} \longleftrightarrow \text { and so on... }
$$

- $\quad A \rightarrow B_{1} C_{1} \quad C_{1} \rightarrow B_{2} C_{2} \ldots C_{k-3} \rightarrow B_{k-2} C_{k-2} \quad C_{k-2} \rightarrow B_{k-1} B_{k}$

Example

G in CNF:

| G: |
| :--- | :--- |
| |
| $S=>A S \mid B A B C$ |
| $A=>A 1\|O A 1\| 01$ |
| $B=>0 B \mid 0$ |
| $C=>1 C \mid 1$ |$\quad \square$| $X_{0}=>0$ |
| :--- |
| $X_{1}=>1$ |
| $S=>A S \mid B Y_{1}$ |
| $Y_{1}=>A Y_{2}$ |
| $Y_{2}=>B C$ |
| $A=>A X_{1}\left\|X_{0} Y_{3}\right\| X_{0} X_{1}$ |
| $Y_{3}=>A X_{1}$ |
| $B=>X_{0} B \mid 0$ |
| $C=>X_{1} C \mid 1$ |

All productions are of the form: $A=>B C$ or $A=>a$

Languages with ε

- For languages that include ε,
- Write down the rest of grammar in CNF
- Then add production " $S=>\varepsilon$ " at the end
E.g., consider:
$S=>A S \mid B A B C$
A => A1 |0A1| $01 \mid \varepsilon$
$B=>0 B|0| \varepsilon$
$C=>1 C|1| \varepsilon$

G in CNF:

$$
\begin{aligned}
& X_{0}=>0 \\
& X_{1}=>1 \\
& S=>A S\left|B Y_{1}\right| \varepsilon \\
& Y_{1}=>A Y_{2} \\
& Y_{2}=>B C \\
& A=>A X_{1}\left|X_{0} Y_{3}\right| X_{0} X_{1} \\
& Y_{3}=>A X_{1} \\
& B=>X_{0} B \mid 0 \\
& C=>X_{1} C \mid 1
\end{aligned}
$$

Other Normal Forms

- Griebach Normal Form (GNF)
- All productions of the form

$$
A==>a \alpha
$$

Return of the Pumping Lemma !!

Think of languages that cannot be CFL

== think of languages for which a stack will not be enough
e.g., the language of strings of the form ww

Why pumping lemma?

- A result that will be useful in proving languages that are not CFLs
- (just like we did for regular languages)
- But before we prove the pumping lemma for CFLs
- Let us first prove an important property about parse trees

Observe that any parse tree generated by a CNF will be a binary tree, where all internal nodes have exactly two children (except those nodes connected to the leaves).

The "parse tree theorem"

Given:

- Suppose we have a parse tree for a string \boldsymbol{w}, according to a CNF grammar, $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
- Let h be the height of the parse tree

Implies:

- $|w| \leq 2^{h-1}$

To show: $\quad|w| \leq 2^{h-1}$

Proof...The size of parse trees

Proof: (using induction on h)
Basis: $\mathrm{h}=1$
\Rightarrow Derivation will have to be
" $\mathrm{S} \rightarrow \mathrm{a}$ "
$\Rightarrow|w|=1=2^{1-1}$.
Ind. Hyp: $\mathrm{h}=\mathrm{k}-1$
$\rightarrow|w| \leq 2^{k-2}$

Ind. Step: $\mathrm{h}=\mathrm{k}$
S will have exactly two children: $S \rightarrow A B$
\rightarrow Heights of $A \& B$ subtrees are at most h -1
$\Rightarrow \mathrm{w}=\mathrm{w}_{\mathrm{A}} \mathrm{w}_{\mathrm{B}}$, where $\left|\mathrm{w}_{\mathrm{A}}\right| \leq 2^{\mathrm{k}-2}$
\quad and $\left|\mathrm{w}_{\mathrm{B}}\right| \leq 2^{k-2}$
$\rightarrow|\mathrm{w}| \leq 2^{\mathrm{k}-1}$

Parse tree for w

Implication of the Parse Tree Theorem (assuming CNF)

Fact:

- If the height of a parse tree is h, then
- ==> $|w| \leq 2^{h-1}$

Implication:

- If $|\mathrm{w}| \geq \mathbf{2}^{\mathrm{m}}$, then
- Its parse tree's height is at least m+1

The Pumping Lemma for CFLs

Let L be a CFL.
Then there exists a constant N, s.t., if $z \in L$ s.t. $|z| \geq N$, then we can write $z=u v w x y$, such that:

1. $|v w x| \leq N$
2. $v x \neq \varepsilon$
3. For all $k \geq 0: \quad u v^{k} w x^{k} y \in L$

Note: we are pumping in two places (v \& x)

Proof: Pumping Lemma for CFL

- If $\mathrm{L}=\Phi$ or contains only ε, then the lemma is trivially satisfied (as it cannot be violated)
- For any other L which is a CFL:
- Let G be a CNF grammar for L
- Let $\mathrm{m}=$ number of variables in G
- Choose N=2m.
- Pick any $z \in L$ s.t. $|z| \geq N$
\rightarrow the parse tree for z should have a height $\geq m+1$
(by the parse tree theorem)

Parse tree for z

Meaning:
 Repetition in the
 last $\mathrm{m}+1$ variables

- Therefore, $\mathrm{vx} \neq \varepsilon$

Extending the parse tree...

Proof contd..

- Also, since A_{i} 's subtree no taller than $m+1$
$==>$ the string generated under A_{i}^{\prime} 's subtree, which is vwx , cannot be longer than $2^{\mathrm{m}}(=\mathrm{N})$

But, $2^{m}=N$
==> $|v w x| \leq N$
This completes the proof for the pumping lemma.

Application of Pumping Lemma for CFLs

Example 1: $\quad L=\left\{a^{m} b^{m} c^{m} \mid m>0\right\}$
Claim: L is not a CFL
Proof:

- Let $\mathrm{N}<==\mathrm{P} / \mathrm{L}$ constant
- Pick $z=a^{N} b^{N} C^{N}$
- Apply pumping lemma to z and show that there exists at least one other string constructed from z (obtained by pumping up or down) that is $\notin \mathrm{L}$

Proof contd...

- $z=u v w x y$
- As $z=a^{N} b^{N} C^{N}$ and $|v w x| \leq N$ and $v x \neq \varepsilon$
- ==> v , x cannot contain all three symbols (a,b,c)
- ==> we can pump up or pump down to build another string which is $\notin \mathrm{L}$

CFL Closure Properties

Closure Property Results

- CFLs are closed under:
- Union
- Concatenation
- Kleene closure operator
- Substitution
- Homomorphism, inverse homomorphism
- reversal
- CFLs are not closed under:
- Intersection
- Difference
- Complementation

Note: Reg languages are closed under these operators

Strategy for Closure Property Proofs

- First prove "closure under substitution"
- Using the above result, prove other closure properties
- CFLs are closed under:
- Union
- Concatenation
- Kleene closure operator

Prove this first

Substitution

- Homomorphism, inverse homomorphism
- Reversal

The Substitution operation

For each $\mathrm{a} \in \sum$, then let $\mathrm{s}(\mathrm{a})$ be a language If $w=a_{1} a_{2} \ldots a_{n} \in L$, then:

$$
\text { . } s(w)=\left\{x_{1} x_{2} \ldots\right\} \in s(L) \text {, s.t., } x_{i} \in s\left(a_{i}\right)
$$

Example:

- Let $\sum=\{0,1\}$
- Let: $s(0)=\left\{a^{n} b^{n} \mid n \geq 1\right\}, s(1)=\{a a, b b\}$
- If $w=01, s(w)=s(0) . s(1)$
- E.g., $s(w)$ contains $a^{1} b^{1}$ aa, $a^{1} b^{1} b b$, $a^{2} b^{2} a a, a^{2} b^{2} b b$,
... and so on.

CFLs are closed under
 Substitution

IF L is a CFL and a substititution defined on $L, s(L)$, is s.t., $s(a)$ is a CFL for every symbol a, THEN:

- $\mathrm{s}(\mathrm{L})$ is also a CFL

What is $s(\mathrm{~L})$?

Note: each s(w)
is itself a set of strings

Substitution of a CFL: example

- Let $\mathrm{L}=$ language of binary palindromes s.t., substitutions for 0 and 1 are defined as follows:
- $s(0)=\left\{a^{n} b^{n} \mid n \geq 1\right\}, s(1)=\{x x, y y\}$
- Prove that $\mathrm{s}(\mathrm{L})$ is also a CFL.

CFG for L:
$S=>0 S 0\|1 S 1\| \varepsilon$

CFG for $s(0):$
$S_{0}=>~ a S_{0} b \mid a b$
:---
$S_{1}=>x x \mid y y$

Therefore, CFG for s(L):
$\mathrm{S}=>\mathrm{S}_{0} \mathrm{SS}_{0}\left|\mathrm{~S}_{1} \mathrm{~S} \mathrm{~S}_{1}\right| \varepsilon$
$\mathrm{S}_{0}=>\mathrm{aS} \mathrm{S}_{0} \mathrm{~b} \mid \mathrm{ab}$
$S_{1}=>x x \mid y y$

CFLs are closed under union

Let L_{1} and L_{2} be CFLs
To show: $L_{2} \cup L_{2}$ is also a CFL

Let us show by using the result of Substitution

- Make a new language:

$$
\begin{aligned}
& =L_{\text {new }}=\{a, b\} \text { s.t., } s(a)=L_{1} \text { and } s(b)=L_{2} \\
& ==>s\left(L_{\text {new }}\right)==\text { same as }==L_{1} \cup L_{2}
\end{aligned}
$$

- A more direct, alternative proof
- Let S_{1} and S_{2} be the starting variables of the grammars for L_{1} and L_{2}
- Then, $\mathrm{S}_{\text {new }}=>\mathrm{S}_{1} \mid \mathrm{S}_{2}$

CFLs are closed under
 concatenation

- Let L_{1} and L_{2} be CFLs

Let us show by using the result of Substitution

- Make $L_{\text {new }}=\{a b\}$ s.t.,

$$
\begin{aligned}
& s(a)=L_{1} \text { and } s(b)=L_{2} \\
= & L_{1} L_{2}=s\left(L_{\text {new }}\right)
\end{aligned}
$$

CFLs are closed under Kleene Closure

- Let L be a CFL
- Let $\mathrm{L}_{\text {new }}=\{\mathrm{a}\}^{*}$ and $\mathrm{s}(\mathrm{a})=\mathrm{L}_{1}$
- Then, $L^{*}=s\left(L_{\text {new }}\right)$

CFLs are closed under
 Reversal

- Let L be a CFL, with grammar G=(V,T,P,S)
- For L^{R}, construct $G^{R}=\left(V, T, P^{R}, S\right)$ s.t.,
- If $A==>\alpha$ is in P, then:
- $A==>\alpha^{R}$ is in P^{R}
- (that is, reverse every production)

CFLs are not closed under Intersection

- Existential proof:
- $\mathrm{L}_{1}=\left\{0^{n 1} \mathrm{n}^{\mathrm{i}} \mid \mathrm{n} \geq 1, \mathrm{i} \geq 1\right\}$
- $\mathrm{L}_{2}=\left\{0^{1} 1^{\mathrm{n}} 2^{\mathrm{n}} \mid \mathrm{n} \geq 1, \mathrm{i} \geq 1\right\}$
- Both L_{1} and L_{2} are CFLs
- But $L_{1} \cap L_{2}$ cannot be a CFL
- We have an example, where intersection is not closed.
- Therefore, CFLs are not closed under intersection

CFLs are not closed under complementation

- Follows from the fact that CFLs are not closed under intersection
- $\mathrm{L}_{1} \cap \mathrm{~L}_{2}=\overline{\mathrm{L}_{1}} \cup \overline{\mathrm{~L}_{2}}$

Logic: if CFLs were to be closed under complementation
\rightarrow the whole right hand side becomes a CFL (because CFL is closed for union)
\rightarrow the left hand side (intersection) is also a CFL
\rightarrow but we just showed CFLs are
NOT closed under intersection!
\rightarrow CFLs cannot be closed under complementation.

CFLs are not closed under difference

- Follows from the fact that CFLs are not closed under complementation
- Because, if CFLs are closed under difference, then:
- L = Σ^{*} - L
- So \bar{L} has to be a CFL too
- Contradiction

Decision Properties

- Emptiness test
- Generating test
- Reachability test
- Membership test
- PDA acceptance

"Undecidable" problems for

CFL

- Is a given CFG G ambiguous?
- Is a given CFL inherently ambiguous?
- Is the intersection of two CFLs empty?
- Are two CFLs the same?
- Is a given $\mathrm{L}(\mathrm{G})$ equal to \sum^{*} ?

Summary

- Normal Forms
- Chomsky Normal Form
- Griebach Normal Form
- Useful in proroving P/L
- Pumping Lemma for CFLs
- Main difference: z=uviwx'y
- Closure properties
- Closed under: union, concatentation, reversal, Kleen closure, homomorphism, substitution
- Not closed under: intersection, complementation, difference

