Undecidability

Reading: Chapter 8 \& 9

Decidability vs. Undecidability

- There are two types of TMs (based on halting): (Recursive)

TMs that always halt, no matter accepting or nonaccepting \equiv DECIDABLE PROBLEMS
(Recursively enumerable)
TMs that are guaranteed to halt only on acceptance. If non-accepting, it may or may not halt (i.e., could loop forever).

- Undecidability:
- Undecidable problems are those that are not recursive

Recursive, RE, Undecidable languages

 No TMs existTMs that always halt

Recursive Languages \& Recursively Enumerable (RE) languages

- Any TM for a Recursive language is going to look like this:

- Any TM for a Recursively Enumerable (RE) language is going to look like this:

Closure Properties of:

- the Recursive language
class, and
- the Recursively Enumerable
language class

Recursive Languages are closed under complementation

- If L is Recursive, \bar{L} is also Recursive

Are Recursively Enumerable Languages closed under complementation?

- If L is RE, L need not be RE

Recursive Langs are closed under Union

Let $\mathrm{M}_{\mathrm{u}}=\mathrm{TM}$ for $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$
M_{u} construction:
Make 2-tapes and copy input w on both tapes
Simulate M_{1} on tape 1
Simulate M_{2} on tape 2
4. If either M_{1} or M_{2} accepts, then M_{u} accepts
5. Otherwise, M_{u} rejects.

Recursive Langs are closed under Intersection

Let $\mathrm{M}_{\mathrm{n}}=\mathrm{TM}$ for $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$
M_{n} construction:
Make 2-tapes and copy input w on both tapes
Simulate M_{1} on tape 1 Simulate M_{2} on tape 2
4. If M_{1} AND M_{2} accepts, then M_{n} accepts
5. Otherwise, M_{n} rejects.

Other Closure Property Results

- Recursive languages are also closed under:
- Concatenation
- Kleene closure (star operator)
- Homomorphism, and inverse homomorphism
- RE languages are closed under:
- Union, intersection, concatenation, Kleene closure
- RE languages are not closed under:
- complementation

"Languages" vs. "Problems"

A "language" is a set of strings

Any "problem" can be expressed as a set of all strings that are of the form:

- "<input, output>"
e.g., Problem $(a+b) \equiv$ Language of strings of the form \{ "a\#b, $a+b$ " \}
==> Every problem also corresponds to a language!!
Think of the language for a "problem" == a verifier for the problem

The Halting Problem

An example of a recursive enumerable problem that is also undecidable

The Halting Problem

Non-RE Languages

What is the Halting Problem?

Definition of the "halting problem":

- Does a givenTuring Machine M halt on a given input w?

The Universal Turing Machine

- A universal Turing machine (UTM) is a Turing machine that simulates an arbitrary Turing machine on arbitrary input.
- Given: TM M \& its input w
- Aim: Build another TM called "H", that will output:
- "accept" if M accepts w, and
- "reject" otherwise
- An algorithm for H :
- Simulate M on w

Implies: H is in RE

- $\mathrm{H}(<\mathrm{M}, \mathrm{w}>)= \begin{cases}\text { accept, } & \text { if } M \text { accepts } w \\ \text { reject, } & \text { if } M \text { does does not accept } w\end{cases}$

Question: If M does not halt on w , what will happen to H ?

A Claim

- Claim: No H that is always guaranteed to halt, can exist!
- Proof: (Alan Turing, 1936)
- By contradiction, let us assume H exists

Therefore, if H exists $\rightarrow \mathrm{D}$ also should exist.
But can such a D exist? (if not, then H also cannot exist)

HP Proof (step 1)

- Let us construct a new TM D using H as a subroutine:
- On input <M>:

1. Run H on input $<\mathrm{M},<\mathrm{M} \gg$; //(i.e., run M on M itself)
2. Output the opposite of what H outputs;

HP Proof (step 2)

- The notion of inputing " $<\mathrm{M}>$ " to M itself
- A program can be input to itself (e.g., a compiler is a program that takes any program as input)
$D(<M>)= \begin{cases}\text { accept, } & \text { if } M \text { does not accept <M> } \\ \text { reject, } & \text { if } M \text { accepts }<M>\end{cases}$
Now, what happens if D is input to itself?

The Diagonalization Language

Example of a language that is not recursive enumerable

(i.e, no TMs exist)

The Diagonalization Ianguage

The Halting Problem

A Language about TMs \& acceptance

Let L be the language of all strings <M,w> s.t.:

1. M is a TM (coded in binary) with input alphabet also binary
2. w is a binary string
3. M accepts input w .

Enumerating all binary strings

- Let w be a binary string
- Then $1 \mathrm{w} \equiv \mathrm{i}$, where i is some integer
- E.g., If $w=\varepsilon$, then $i=1$;
- If $w=0$, then $i=2$;
- If $w=1$, then $i=3$; so on...
- If $1 \mathrm{w} \equiv \mathrm{i}$, then call w as the $\mathrm{i}^{\text {th }}$ word or $\mathrm{i}^{\text {th }}$ binary string, denoted by w_{i}.
- ==> A canonical ordering of all binary strings:
- $\{\varepsilon, 0,1,00,01,10,11,000,100,101,110, \ldots .$.
$=\left\{w_{1}, w_{2}, w_{3}, w_{4}, \ldots . w_{i}, \ldots\right\}$

Any TM M can also be binarycoded

- $M=\left\{Q,\{0,1\}, \Gamma, \delta, q_{0}, B, F\right\}$
- Map all states, tape symbols and transitions to integers (==>binary strings)
- $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$ will be represented as:
- ==> $0110110^{k} 10^{\prime 1} 0^{m}$
- Result: Each TM can be written down as a long binary string
- ==> Canonical ordering of TMs:
- $\left\{\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}, \ldots . \mathrm{M}_{\mathrm{i}}, \ldots\right\}$

The Diagonalization Language

- $\mathrm{L}_{\mathrm{d}}=\left\{\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}} \notin \mathrm{L}\left(\mathrm{M}_{\mathrm{i}}\right)\right\}$
- The language of all strings whose corresponding machine does not accept itself (i.e., its own code)
(TMs)

- Table: $T[i, j]=1$, if M_{i} accepts w_{j} $=0$, otherwise.
- Make a new language called

$$
L_{d}=\left\{w_{i} \mid T[i, i]=0\right\}
$$

diagonal

Why should there be languages that do not have TMs?

We thought TMs can solve everything!!

Non-RE languages

How come there are languages here?
(e.g., diagonalization language)

Non-RE Languages

One Explanation

There are more languages than TMs

- By pigeon hole principle:
- ==> some languages cannot have TMs
- But how do we show this?
- Need a way to "count \& compare" two infinite sets (languages and TMs)

How to count elements in a set?

Let A be a set:

- If A is finite ==> counting is trivial
- If A is infinite $==>$ how do we count?
- And, how do we compare two infinite sets by their size?

Cantor's definition of set "size" for infinite sets (1873 A.D.)

Let $N=\{1,2,3, \ldots\} \quad$ (all natural numbers)
Let $\mathrm{E}=\{2,4,6, \ldots\} \quad$ (all even numbers)
Q) Which is bigger?

- A) Both sets are of the same size
- "Countably infinite"
- Proof: Show by one-to-one, onto set correspondence from

$$
N==>E
$$

i.e, for every element in N ,
there is a unique element in E, and vice versa.

Really, really big sets!
(even bigger than countably infinite sets)

Uncountable sets

Example:

- Let R be the set of all real numbers
- Claim: R is uncountable

n	$f(n)$	
1	$3.14159 \ldots$	Build x s.t. x cannot possibly
2	$5.5 \underline{5} 555 \ldots$	
3	$0.12 \underline{3} 45 \ldots$	
4	$0.514 \underline{3} 0 \ldots$	E.g. $x=0.2644 \ldots$

Therefore, some languages cannot have TMs...

- The set of all TMs is countably infinite
- The set of all Languages is uncountable
- ==> There should be some languages without TMs (by PHP)

Summary

- Problems vs. languages
- Decidability
- Recursive
- Undecidability
- Recursively Enumerable
- Not RE
- Examples of languages

The diagonalization technique Reducability

