INTRODUCTION TO AUTOMATA AND THEORY OF COMPUTATION

Dr. Raj Singh

TU 6:00P - 8:00P

Virtual: Teams

Teams Meeting: Link in BB.

COURSE TIME & LOCATION

INSTRUCTOR CONTACT

İ	Instructor:	Dr. Raj Singh
	Email:	rksingh@central.uh.edu
	Office Hours:	By appointment
	Office Location:	Virtual

Introduce concepts in automata theory and theory of computation

Identify different formal language classes and their relationships

Design grammars and recognizers for different formal languages

Prove or disprove theorems in automata theory using its properties

Determine the decidability and intractability of computational problems

COURSE OBJECTIVES

- Very broadly, the course will contain three parts:
 - Part I) Regular languages
 - Part II) Context-free languages
 - Part III) Turing machines & decidability

RECOMMENDED TEXTBOOK

Introduction to Automata Theory, Languages and Computation

By J.E. Hopcroft, R. Motwani, J.D. Ullman, 3rd Edition, Addison Wesley/Pearson

Course book homepage: <u>http://infolab.stanford.edu/~ullman/ialc.html</u>

Solutions to starred exercises in the textbook & Errata

Syllabus

*** ***

Class notes

Assignments

COURSE CONTENTS

Online via Team

Recordings are available on Blackboard

e).
11111

Students are required to review material and recordings.

We will only cover important material during lectures.

LECTURES

GRADING

Five assignments (may change)

Soft copy on the due date

Submit in Blackboard Early submissions allowed

No late submissions

Extensions may be permitted under extraordinary circumstances

Contact the instructor

Assignments will be available in Blackboard.

Pay close attention to due date.

ASSIGNMENTS

Quizzes: 2

Exams: 2

Multiple choice and short answers.

Posted in Blackboard

Final - Online

Lockdown

QUIZZES & EXAMS

CHEATING POLICY

All work must be done individually

Cheating:

Copying someone else's work, paying someone ...

•́~____

Students caught cheating will be awarded "F" grade and will be subjected to the University academic dishonesty policy.

If something is not clear, on what constitutes and what does not, please consult the instructor in advance.

Lectures will involve slides and other resources.

Lecture slides and recordings are available in Blackboard

Students must review slides before lectures. We will only cover main topics during lectures.

Ask questions and participate in discussions.

LECTURE BASICS

TENTATIVE SCHEDULE (MAY CHANGE)

 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-045j-automata-computability-and-complexity-spring-2011/lecture-notes/