
Dr. Raj Singh



• How well it complies with or conforms to a given design, based on 
functional requirements or specifications. 

Functional Quality

• Refers to how it meets non-functional requirements that support the 
delivery of the functional requirements, such as robustness or 
maintainability, the degree to which the software was produced 
correctly.

Structural Quality

2



You can’t be Agile if your Code sucks

Customers prefer quality software products

A product of poor quality is very difficult to maintain

Its just like a ceramic plate that must not drop to the ground 

Updates to bad code is a nightmare which if not handled carefully can break the whole 
product

3



Software quality drives predictability.

Do it once and do it right

There will be less re-work, less variation in 
productivity and better performance overall

Products get delivered on time, and they get 
built more productively 

Poor quality is much more difficult to manage

4



Some companies have a 
reputation for building quality 
software. 

A good, solid reputation is hard to 
establish and easy to lose, but 
when your company has it, it’s a 
powerful business driver. 

A few mistakes and that 
reputation can be gone, creating 
major obstacles to sales, and 
consequently, your bottom line.

5



The most productive and happy employees 
have pride in their work. 

Enabling employees to build quality 
software will drive a much higher level of 
morale and productivity. 

On the other hand, poor products, lots of re-
work, unhappy customers and difficulty 
making deadlines have the opposite effect, 
leading to expensive turnover and a less 
productive workforce.

6



A quality product satisfies the customer. 

A satisfied customer comes back for more and 
provides positive referrals. 

Customer loyalty is heavily driven by the quality 
of the software you produce and service you 
provide. 

Explosion of social media channels such as Twitter 
and Facebook, positive referrals can spread 
quickly. 

Poor quality and dissatisfaction can also be 
communicated quickly, if not even quicker than 
the good ones.

7



It’s less costly to fix a defect if it’s 
discovered early in the project

As project moves forward cost increases

The graph shows the cost impact of 
fixing defects

8



Finding, fixing problem in production is 100 times more expensive than during requirements/design phase.

40-50% of effort on projects is on avoidable rework.

~80% of avoidable rework comes from 20% of defects.

~80% of defects come from 20% of modules; about half the modules are defect free.

~90% of downtime comes from at most 10% of defects.

Peer reviews catch 60% of defects.

Perspective-based reviews catch 35% more defects than non-directed reviews.

Disciplined personal practices can reduce defect introduction rates by up to 75%.

It costs 50% more per source instruction to develop high-dependability software product.

~40-50% of user programs have nontrivial defects.

9



Can’t QA take care of quality, why 
should developers care?

QA shouldn’t care about quality of 
design and implementation

They should care about acceptance, 
performance, usage, and relevance of 
the application

Give them a better quality software so 
they can really focus on that

10



Technical debt are activities 
like 

refactoring, upgrading a library, 
conforming to some UI or coding 
standard

These will hamper your progress if left undone for a longer 
time

You’ll be more productive if quality is better

11



Some quality attributes are 
objective, and can be 
measured accordingly. 

Some are subjective, and are 
therefore captured with more 
arbitrary measurements.

12



Quality attributes can be external or internal.

External: Derived from the 
relationship between the 
environment and the system 
(or the process). (To derive, 
the system or process must 
run) 

e.g. Reliability, 
Robustness

Internal: Derived 
immediately from the product 
or process description (To 
derive, it is sufficient to have 
the description)

Underlying 
assumption: internal 
quality leads to 
external quality (cfr. 
metaphor 
manufacturing lines)
e.g. Efficiency

13



Correctness

A system is correct if it behaves 
according to its specification
An absolute property (i.e., a system 
cannot be “almost correct”)

Reliability

The user may rely on the system 
behaving properly
Reliability is the probability that the 
system will operate as expected over a 
specified interval
A relative property (a system has a mean 
time between failure of 3 weeks)

Robustness

A system is robust if it behaves 
reasonably even in circumstances that 
were not specified
A vague property (once you specify the 
abnormal circumstances they become 
part of the requirements)

14



Efficiency 
(Performance)

Use of resources such as 
computing time, 

memory

Affects user-
friendliness and 

scalability

Usability 
(User Friendliness)

The degree to which the 
human users find the 

system (process) both 
“easy to use” and useful

Often a system has 
various kinds of users 
(end-users, operators, 

installers)

Typically expressed in 
“amount of time to learn 

the system”

15



How easy it is to 
change a system after 
its initial release

software entropy Þ
maintainability gradually 
decreases over time

Repairability How much work is needed 
to correct a defect

Evolvability 
(Adaptability)

How much work is needed 
to adapt to changing 
requirements (both 
system and process)

Portability
How much work is needed 
to port to new 
environment or platforms

16



Verifiability: 
How easy it is to verify whether 
desired attributes are there?

• internally: verify requirements, code 
inspections

• externally: testing, efficiency

Understandability: 
How easy it is to understand the 
system?

• internally: contributes to maintainability
• externally: contributes to usability

17



Productivity
• Amount of product produced by a process 

for a given number of resources
• productivity among individuals varies a lot

Timeliness
• Ability to deliver the product on time
• often a reason to sacrifice other quality 

attributes

Visibility (Transparency)
• Current process steps and project status are 

accessible
• important for management

18



Start early

Don’t Compromise

Schedule time to lower your technical debt

Make it work; make it right )right away*

Requires monitoring and changing behavior

Be willing to help and be helped

Devise lightweight non-bureaucratic measures

19



What can you do?

Care about design of your code

Keep it Simple

Write tests with high coverage

Run all your tests before checkin

Learn your language

Court feedback and criticism

20



Avoid shortcuts

Take collective 
ownership

team should own the 
code

Promote positive interaction

Provide constructive feedback

Constant code review

21



Code review is by far the proven way 
to reduce code defects and improve 
code quality

Code review does not work if it’s not 
done right.

Do you get together as a team, project 
code, and review?

Don’t make it an emotionally draining

22



We’ve used code review effectively

Code reviewed by one developer right after task is complete 
(or anytime before)

Rotate reviewer for each review

Say positive things, what you really like

Constructively propose changes

Instead of “that’s lousy long method” say, “why don’t you split 
that method...”

Review not only code, but also tests

Do not get picky on style, instead focus on correctness, 
readability, and design.

23



Rigorous inspection can remove up to 
90 percent of errors before the first 
test case is run.

Reviews are both technical and 
sociological, and both factors must be 
accommodated.

Code review makes me smarter.

I learn ways to improve my code by 
looking at somebody’s code.

24



Cohesion – single responsibility principle

Extensibility and Flexibility – OOP 

Triangulation – generalization

Cost of Change – code that does many things is hard to 
maintain

Code Coverage – how much code needs testing

Complexity – large classes and methods are hard to maintain

Code Size – too much or too little

Code Duplication – why are you repeating?

25



Analyzing code to find bugs

Look for logic errors, coding guidelines 
violations, synchronization problems, data 
flow analysis, ...

IDEs Automated tools

Other tools:
[Java] PMD, FindBugs, JLint

[.NET] VS, FxCop, ...

[C++] VS, Lint, ...

26



It’s a feeling or sense that something is 
not right in the code

You can’t understand it

Hard to explain

Does some magic

27



Duplication

Unnecessary complexity

Useless/misleading comments

Long classes, methods, poor naming

Code that’s not used

Improper use of OOP

Tight coupling

Design Pattern overuse

28



Deal with code 
smells

Refactor frequently

Don’t rush take time to write 
tests

Commenting and 
self documenting 
code

Just enough 
comments. Don’t 
write stories.

Capture errors
Surround code that 
might be 
troublesome with try 
catch blocks

29



Practice tactical peer code review

Consider untested code is unfinished code

Make your code coverage and metrics visible

Use tools to check code quality

Treat warnings as errors

Keep it small and simple

30



31

Review class notes. 

Additional reading: 

Why quality matters?

Start a discussion on Google 
Groups to clarify your doubts.


