
Dr. Raj Singh



What is SOA?

Why SOA?

SOA and Java

Different layers of SOA

REST

Microservices

2



Service Oriented Architecture (SOA)

An architectural style of building software applications that promotes loose coupling between components for 
reusability. 

Services are software components that have published contracts/interfaces; these contracts are platform-, 
language-, and operating-system-independent. 

XML and the Simple Object Access Protocol (SOAP) 
are the enabling technologies for SOA, since they're 
platform-independent standards.

Consumers can dynamically discover services.
Services are interoperable

3



The basic building block of SOA is the service. 

A service is a self-contained software module that performs a 
predetermined task.

Services are platform and technology independent.

As developers, we tend to focus on reusing code; thus, we tend to 
tightly integrate the logic of objects or components within an 
application.

SOA promotes application 
assembly because services can 
be reused by numerous 
consumers.

For example: USPS address 
verification service

4



IT organizations invariably employ disparate 
systems and technologies. 

J2EE and .NET will continue to coexist in most 
organizations and the trend of having 
heterogeneous technologies in IT shops will 
continue. 

SOA provides a clear solution to these application 
integration issues.

Allowing systems to expose their functionality via 
standardized, interoperable interfaces without 
rewriting the application.

5



Reusable components

Platform independent

Adapt applications to changing technologies.

Easily integrate applications with other systems.

Leverage existing investments in legacy 
applications.

Quickly and easily create a business process from 
existing services.

6



Web services and SOA are not synonymous.

SOA is a design principle, whereas web services is 
an implementation technology. 

You can build a service-oriented application without 
using web services--for example, by using other 
traditional technologies such as Java RMI.

There are two main API's 
defined by Java for 
developing web service 
applications since JavaEE 6.

JAX-WS: for SOAP web 
services.
JAX-RS: for RESTful web 
services. There are mainly 2 
implementation currently in 
use: Jersey and RESTeasy.

7



Service-oriented 
applications are multi-tier 
applications and have:

presentation, business logic, 
and persistence layers

The two key tiers in SOA 
are the 

services layer and the 
business process layer

8



Services are the 
building blocks of 
service-oriented 

applications. 

Services are 
somewhat 

analogous to Java 
objects and 

components such 
as EJBs. 

Unlike objects, 
however, services 
are self-contained, 
maintain their own 
state, and provide 
a loosely coupled 

interface.

Java provides a 
comprehensive 

platform for 
building the 

service layer of 
service-oriented 

applications.

9



With SOA you can 
build a new 

application from 
existing services.

SOA has 
standardized 

business process 
modeling, often 
referred to as 

service 
orchestration. 

You can build a web-
service-based layer 
of abstraction over 
legacy systems and 

subsequently 
leverage them to 

assemble business 
processes.

Business Process 
Execution Language 

(BPEL) is the 
standard 

programming 
language for 

defining business 
processes 

represented in XML.

10



Partner links for the services with which the 
process interacts.

Variables for the data to be manipulated.

Correlations to correlate messages between 
asynchronous invocations.

Faults for message definitions for problems.

Compensation handlers to execute in the case of 
problems.

Event handlers that let the process deal with 
anticipated events in a graceful fashion.

11



The presentation layer is used for user interaction. 

Several Model-View-Controller (MVC) 
frameworks allow loose coupling between 
presentation layer and the model that supplies the 
data and business logic. 

The main problem is that there's no standard way 
of binding data between different kinds of clients.

Clients have to know the exact underlying 
implementation of the service layer.

12



Representational state transfer (REST) or 
RESTful web services are a way of 
providing interoperability between 
computer systems on the Internet. 

In a RESTful Web service, requests made 
to a resource's URI will elicit a response 
that may be in XML, HTML, JSON or some 
other defined format.

Using HTTP, as is most common, the kind 
of operations available include those 
predefined by the CRUD HTTP methods 
GET, POST, PUT, DELETE and so on.

13



Microservices are a modern 
interpretation of SOA used to 

build distributed software 
systems. 

Services are processes that 
communicate with each other 

over the network.

These services use technology 
agnostic protocols, which aid 

in encapsulating choice of 
language and frameworks. 

Microservices have become 
popular since 2014 (and after 
the introduction of DevOps), 

and which also emphasize 
continuous deployment and 

other agile practices.

14



It's similar to a big container wherein all 
the software components of an 
application are assembled together and 
tightly packaged.

An architectural style that structures an 
application as a collection of small 
autonomous services, modeled around 
a business domain.

15



Inflexible - Monolithic applications cannot be built using 
different technologies.

Unreliable - If even one feature of the system does not work, 
then the entire system does not work.

Unscalable - Applications cannot be scaled easily since each 
time the application needs to be updated, the complete system 
has to be rebuilt.

Blocks Continuous Development - Many features of an 
application cannot be built and deployed at the same time.

Slow Development - Development in monolithic applications 
takes a lot of time to be built since each and every feature has 
to be built one after the other.

Not Fit for Complex Applications - Features of complex 
applications have tightly coupled dependencies.

16



Decoupling
•Services within a system are largely decoupled, so the application as a whole can be easily built, 
altered, and scaled.

Componentization
•Microservices are treated as independent components that can be easily replaced and 
upgraded.

Business Capabilities
•Microservices are very simple and focus on a single capability.

Autonomy
•Developers and teams can work independently of each other, thus increasing speed.

Continuous Delivery
•Allows frequent releases of software through systematic automation of software creation, testing, 
and approval.

Responsibility
•Microservices do not focus on applications as projects. Instead, they treat applications as 
products for which they are responsible.

Decentralized Governance
•The focus is on using the right tool for the right job. That means there is no standardized pattern 
or any technology pattern. Developers have the freedom to choose the best useful tools to solve 
their problems.

Agility
•Microservices support agile development. Any new feature can be quickly developed and 
discarded again.

17



Independent 
Development

All microservices can be easily 
developed based on their 
individual functionality.

Independent 
Deployment

Based on their services, they can 
be individually deployed in any 
application.

Fault Isolation
Even if one service of the 
application does not work, the 
system still continues to function.

Mixed Technology 
Stack

Different languages and 
technologies can be used to 
build different services of the 
same application.

Granular Scaling
Individual components can scale 
as per need, there is no need to 
scale all components together.

18



When you open a shopping cart 
application, all you see is just a 
website. 

Behind the scenes, the shopping 
cart application has a service for 
accepting payments, a service for 
customer services and so on.

Solution can be implemented as a 
monolithic service or 
microservices.

19



All the features are put together in a 
single code base and are under a single 
underlying database.

20



Create separate microservices for search, 
recommendations, customer services and so 
on. This helps the shopping cart application to 
be built, deployed, and scale up easily.

21



https://www.mkyong.com/webservices/jax-
rs/restfull-java-client-with-java-net-url/

Get the code working.

Fix any errors and understand how rest 
services work.

22


