
Dr. Raj Singh

What is Refactoring?

Code Smells

Why Refactoring?

Techniques

IDEs

2

“Art of improving the design of existing code”

Disciplined technique for restructuring an existing body of code.

Altering internal structure without changing external behavior of code.

Agile teams maintain and extend code a lot from iteration to iteration.

Without continuous refactoring code tends to rot (bad code smell).

3

A popular metaphor for refactoring is cleaning
the kitchen as you cook.

In any kitchen you will typically find that
cleaning and reorganizing occur continuously.

Someone is responsible for keeping the dishes,
the pots, the kitchen itself, the food.

The refrigerator is cleaned and organized from
moment to moment.

Without this, continuous cooking would soon
collapse.

4

Code smell is any symptom in the code that
possibly indicates a deeper problem

Code smells are usually not bugs or broken code

They don't currently prevent the program from
functioning

They indicate weaknesses in design

Disaster waiting to happen

Slowing down development or increasing the risk
of bugs or failures in the future

5

6

Example deals with files

What could go wrong if file doesn’t exist?

Bad filename

File is locked while code executes

Someone else needs access to the file

Wait a minute … we didn’t close the file …

Only one method that performs all steps

7

Repeating Code: duplicated code

Coding Standards:
too many parameters, long
method, large class, naming
conventions

Feature envy a class that uses methods of
another class excessively

Dependency:
a class that has dependencies
on implementation details of
another class.

Lazy class / Freeloader: a class that does too little.

8

Contrived complexity:
forced usage of overly
complicated design
patterns where simpler
design would suffice.

Excessively long or
short identifiers:

not following coding
standards

Excessive use of literals: these should be coded as
named constants

Ubercallback: a callback that is trying to
do everything

Complex conditionals Complex if-else blocks

9

The habit of
postponing code

fixes

Insisting on a
one-liner
solution

Ignoring the
warnings

Not my code /
it’s my code

Excessive use of
design patterns
without knowing

the usage

Hard coded
values No unit testing Not following

standards

10

Refactoring is usually motivated by
noticing a code smell

Once recognized, such problems can
be addressed by refactoring the
source code

Or transform code into a new form that
behaves the same as before but that
no longer “smells”

Failure to perform refactoring can
result in accumulating technical debt

11

Why fix what’s not broken?

A software module
Should function its
expected functionality
• It exists for this

It must be affordable
to change

It will have to change
over time, so it better
be cost effective

Must be easier to
understand

Developers unfamiliar
with it must be able to
read and understand it

12

Maintainability:
It is easier to fix bugs because
the source code is easy to read
and the intent of its author is
easy to grasp.

Extensibility: It is easier to extend add new
features

Reusability: Reuse of some functionality
without too much coding.

Quality: Good quality code that doesn’t
smell.

Optimization Maintain high standards and
simplicity

13

A solid set of automatic unit tests is
needed

The tests are used to demonstrate that
the behavior of the module is correct
before the refactoring

If a test fails, then it's generally best to
fix the test first

Understand the impact of refactoring,
dependencies, and impact on other
parts of the system

14

The tests are run again to verify the
refactoring didn't break the tests

Of course, the tests can never prove that
there are no bugs, but the important point
is that this process can be cost-effective

Good unit tests can catch enough errors to
make them worthwhile and to make
refactoring safe enough

Do regression test of complete application
to make sure other parts are still working.

15

The process is an iterative cycle of making a
small program transformation.

Testing it to ensure correctness, and making
another small transformation.

If at any point a test fails, the last small change
is undone and repeated in a different way.

Through many small steps the program moves
from where it was to where you want it to be.

In order for this very iterative process to be
practical, the tests have to run very fast.

16

Encapsulate Field force code to access the field
with getter and setter methods

Generalize Type create more general types to
allow for more code sharing

Replace type checking code with
State/Strategy

Simplify Conditions replace conditional
with polymorphism

17

Componentization break code down into
reusable semantic units

Extract Class
move parts of the code
from an existing class
into a new class

Extract Method
turn part of a
larger method into a
new method

Break down code smaller code is more
easily understandable

18

Move Method or
Move Field

move to a more
appropriate class or
method

Rename Method or
Rename Field

changing the name
into a new one that
better reveals its
purpose

Pull Up in OOP, move to
a superclass

Push Down in OOP, move to
a subclass

19

Refactoring is much easier to do automatically than it is to do
by hand

More Integrated Development Environments (IDEs) are
building in automated refactoring support

Select the code you want to refactor, pull down the specific
refactoring you need from a menu, and the IDE does the rest

You are prompted appropriately by dialog boxes for new
names for things that need naming, and for similar input.

You can then immediately rerun your tests to make sure that
the change didn't break anything.

If anything is broken, you can easily undo the refactoring and
investigate

20

Code review is systematic
examination (often known as peer
review) of source code.

It is intended to find and
fix mistakes overlooked in the initial
development phase.

It improves both the overall quality of
software and the developers' skills.

Reviews are done in various forms
such as pair programming, informal
walkthroughs, and formal inspections.

21

Pair programming

Two developers code together and
review each others code and
provide feedback

Formal code review

Involves a careful and detailed
process with multiple participants
and multiple phases

Lightweight code review

Conducted as part of the normal
development process

22

Over-the-
shoulder

One developer
looks over the
author's shoulder
as the latter
walks through
the code.

Email pass-
around

Email code to
reviewers
automatically
after code is
committed.

Tool-assisted
code review

Authors and
reviewers use
specialized tools
designed for
peer code
review.

23

24

24

25

25

To
• Anytime you can cleanup the code
• To make it readable, understandable, simpler
• You are convinced about the change
• Before adding a feature or fixing a bug
• After adding a feature or fixing a bug

Not to
• Not for the sake of refactoring
• When the change will affect too many things
• When change may render application unusable
• In the middle of adding a feature or fixing a bug
• You don’t have unit tests to support your change

26

Review class notes. Additional reading:

Examples of UML diagrams

Start a discussion on Google
Groups to clarify your doubts.

27

