
Dr. Raj Singh

What are Design Patterns?

Why Design Patterns?

Example

Design Pattern Types

2

A toolkit is a library of reusable classes
designed to provide useful, general-purpose
functionality

E.g., Java APIs (awt, util, io, net, etc)

A framework is a specific set of classes that
cooperate closely with each other and together
embody a reusable design for a category of
problems

E.g., Struts, JSF, WCF, WPF, etc.

A design pattern describes a general recurring
problem in different domains, a solution, when to
apply the solution, and its consequences

E.g., Factory, Façade, Singleton etc.

3

A framework embodies a complete design of an
application

A pattern is an outline of a solution to a class of
problems

A framework dictates the architecture of an
application and can be customized (e.g. Entity)

When one uses a framework, one reuses the main
body of the framework and writes the code it calls.

When one uses a toolkit, one writes the main body
of the application that calls the code in the toolkit.

Design patterns are integral parts of frameworks
and toolkits

4

A reusable solution for common occurring problems

A description or template for how to solve a problem

Formalized best practices to speed up the development process

Provide tested, proven development paradigms

OOP/OOD compatible

Documented in a platform independent format

5

Provides
vocabulary to
communicate,
document, and
explore design

alternatives.

Captures the
experience of an

expert and
codifies it in a

form that is
reusable.

Reusable solution
to commonly

recurring
programming

problems.

Represents the
best

programming
practices adapted
by experienced

object-
oriented software

engineers.

6

Effective software design requires
consideration of:

short term and long term issues
improved code readability
ease of implementation and reproducible results

DP facilitates achieve reliable and flexible code

Patterns turn into components

Resolves known issues and can capture unknowns

7

A client interacts with an intermediary

The requested services are carried out by the
server/worker.

9

Intermediary acts like a transmission agent

A proxy, in its most general form, is a class functioning as an
interface to something else.

Client Proxy Server

10

Client Adapter Server

Intermediary acts like a translator between the client and the server.

E.g., Format/protocol conversions.

11

Intermediary acts like a focal point distributing work to other agents.

E.g. telnet, ftp, … --> web-browser

Client Facade

Server1

Server2

Server3 12

Intermediary defines the interface but not the implementation.

E.g., Motif/Mac/Windows look and feel

Client Bridge

Impl1

Impl2

Impl3 13

Several sections defining:

a prototypical micro-
architecture (classes and objects)

developers copy and adapt to their
particular designs

solution to the recurrent problem
described by the design pattern

14

Must explain why a particular situation
causes problems

Why the proposed solution is
considered a good one

Must define the boundaries and
environments it is applicable in

Must be a general approach with
options

15

Based on the problem scope there are different
types

Creational

Structural

Behavioral

Architectural

16

Creates object for you, rather than having you instantiate objects directly.

More flexibility in deciding which objects need to be created for a given case.

• groups object factories that have a common theme.Abstract Factory

• constructs complex objects by separating construction and representation.Builder

• method creates objects without specifying the exact class to create.Factory

• creates objects by cloning an existing object.Prototype

• restricts object creation for a class to only one instance.Singleton

17

These concern class and object composition

Defines ways to compose objects to obtain new functionality
• allows classes with incompatible interfaces to work together by

wrapping its own interface around that of an already existing class.Adapter
• decouples an abstraction from its implementation so that the two can

vary independentlyBridge
• provides a simplified interface to a large body of codeFaçade
• composes zero-or-more similar objects so that they can be

manipulated as one object.Composite
• reduces the cost of creating and manipulating similar objectsFlyweight

18

These concern how objects communicate with each other

Identifies common communication pattern

• delegates commands to a chain of processing objects.Chain of responsibility

• creates objects which encapsulate actions and parameters.Command

• implements a specialized languageInterpreter
• accesses the elements of an object sequentially without

exposing its underlying representationIterator
• allows an object to alter its behavior when its internal state

changesState

19

These address various issues in software engineering

Reusable solution to recurring problem in software architecture

• create the composite architecture scalable,
reliable, available and manageableApplication

• rules or standards that govern which data is
collected, and how it is stored, arrangedData

20

21

Review class notes. Additional reading:

Examples of Design Patterns

Start a discussion on Google
Groups to clarify your doubts.

