
Dr. Raj Singh



Most Used Design Patterns

Deep Dive

Examples

Where to go next?

2



3

Pattern Category Notes

Singleton Creational limit creation of a class to only one object

Factory Creational objects are created by calling a factory method instead of a constructor

Builder Creational creating complex types can be simplified by using the builder pattern

Adapter Structural allows classes with incompatible interfaces to work together by 
wrapping its own interface around that of an already existing class

Facade Structural create a simplified interface of an existing interface to ease usage for 
common tasks

Observer Behavioral when one object changes state, all its dependents are notified

Chain of 
Responsibility

Behavioral delegates commands to a chain of processing objects





5

This is the most used pattern 

A lot of framework 
already implement this 
pattern, such as:

Spring (via @ApplicationScoped)
EJBs (using @Singleton)

Ensure a class has only one instance and provide a 
global point to access it

The concept is sometimes generalized to systems 
that operate more efficiently when only one object 
exists

The term comes from the mathematical concept of 
a singleton



Problem: You need an object that needs to be instantiated once. 

The class needs to declare a private constructor to prevent people to instantiate it from outside the 
class. 

The method getInstance() assures that only one instance of this class is created at runtime.

public class SingletonExample {
private static SingletonExample instance = null;
private SingletonExample() { }
public static SingletonExample getInstance() {
if(instance == null) {
instance = new SingletonExample();

}
return instance;
}

}
6



7

This enables writing of subclasses to change the way an 
object is created

The Factory design pattern describes how to solve such 
problems:

Define a separate operation (factory 
method) for creating an object.

Create an object by calling a factory 
method.

Problem: How can an object be created so that subclasses 
can redefine which class to instantiate?



The MazeGame uses Rooms but it puts the responsibility of creating Rooms to its subclasses which create the concrete classes. 

The regular game mode could use this template method.

public abstract class Room {
abstract void connect ( Room room );

}
public class MagicRoom extends Room {

public void connect ( Room room ) { }
}
public class OrdinaryRoom extends Room {
public void connect ( Room room ) { }

}
public abstract class MazeGame {

private final List<Room> rooms = new ArrayList <> ( );
Public MazeGame () {
Room room1 = makeRoom( );
Room room2 = makeRoom( );
room1.connect( room2 );
rooms.add( room1 );
rooms.add( room2 );

}
abstract protected Room makeRoom( );

}

8



9

The builder pattern can help us in this case
The intent of the Builder design pattern 

is to separate the construction of a 
complex object from its representation

By doing so the same construction 
process can create different 

representations

In this case, either using the constructor to 
create this object or using the setters will 
make code ugly and hard to understand

Problem: Some objects require lots of 
parameters to be created



A product can have many types.
public class Product {
private String id;
private String name;
private String description;
private Double value;
private Product(Builder builder) {
setId(builder.id);
setName(builder.name);
setDescription(builder.description);
setValue(builder.value);

}
// Getter and Setter methods for all attributes
. . .

}
10



Builder class builds the product
public static final class Builder {
private String id;
private String name;
private String description;
private Double value;
private Builder() { }
public Builder id(String id) { this.id = id; return this; }
public Builder name(String name) { this.name = name; return this; }
public Builder description(String description) {
this.description = description; return this;

}
public Builder value(Double value) { this.value = value; return this; }
public Product build() { return new Product(this); }

}
11



12

The adapter design pattern describes how to solve such 
problems:

Define a separate adapter class that converts the 
(incompatible) interface of a class (adaptee) into 

another interface (target) clients require.

Work through an adapter to work with (reuse) 
classes that do not have the required interface.

The key idea is to work through a separate adapter that 
adapts the interface of an existing class without changing it

Problem: Often an existing class can't be reused because its 
interface doesn't conform to the interface clients require



Charging phones
interface LightningPhone {
void recharge();
void useLightning();
}
interface MicroUsbPhone {
void recharge();
void useMicroUsb();
}
class Iphone implements LightningPhone {
private boolean connector;
@Override
public void useLightning() {
connector = true;
}
@Override
public void recharge() {
if (connector) {
System.out.println("Recharge started");
} else {
System.out.println("Connect Lightning first");
}
}
}
. . .

13



Charging phones
class Android implements MicroUsbPhone {
private boolean connector;

@Override
public void useMicroUsb() {
connector = true;
System.out.println("MicroUsb connected");

}

@Override
public void recharge() {
if (connector) {
System.out.println("Recharge started");

} else {
System.out.println("Connect MicroUsb first");

}
}

}
. . .

14



Charging phones
class LightningToMicroUsbAdapter implements MicroUsbPhone {
private final LightningPhone lightningPhone;

public LightningToMicroUsbAdapter(LightningPhone lightningPhone) {
this.lightningPhone = lightningPhone;

}

@Override
public void useMicroUsb() {
System.out.println("MicroUsb connected");
lightningPhone.useLightning();

}

@Override
public void recharge() {
lightningPhone.recharge();

}
}
. . .

15



Charging phones
public class AdapterDemo {
static void rechargeMicroUsbPhone(MicroUsbPhone phone) {
phone.useMicroUsb();
phone.recharge();
}
static void rechargeLightningPhone(LightningPhone phone) {
phone.useLightning();
phone.recharge();
}
public static void main(String[] args) {
Android android = new Android();
Iphone iPhone = new Iphone();

System.out.println("Recharging android with MicroUsb");
rechargeMicroUsbPhone(android);
System.out.println("Recharging iPhone with Lightning");
rechargeLightningPhone(iPhone);
System.out.println("Recharging iPhone with MicroUsb");
rechargeMicroUsbPhone(new LightningToMicroUsbAdapter(iPhone));
}
}

16



17

The Facade design pattern describes how to solve such 
problems:

implements a simple interface in 
terms of (by delegating to) the 

interfaces in the subsystem

may perform additional functionality 
before/after forwarding a request

Facade enables to work through an object to minimize the 
dependencies on a subsystem

Problem: Clients that access a complex subsystem directly 
refer to many different objects having different interfaces, 
which makes the clients hard to implement, change, test, 

and reuse



How a client ("you") interacts with a facade (the "computer") to a complex system (internal 
computer parts, like CPU and HardDrive)

/* Complex parts */

class CPU {
public void freeze() { ... }
public void jump(long position) { ... }
public void execute() { ... }

}

class HardDrive {
public byte[] read(long lba, int size) { ... }

}

class Memory {
public void load(long position, byte[] data) { ... }

}
. . .

18



How a client ("you") interacts with a facade (the "computer") to a complex system (internal computer parts, like CPU and HardDrive)
/* Facade */
class ComputerFacade {
private final CPU processor;
private final Memory ram;
private final HardDrive hd;

public ComputerFacade() {
this.processor = new CPU();
this.ram = new Memory();
this.hd = new HardDrive();
}

public void start() {
processor.freeze();
ram.load(BOOT_ADDRESS, hd.read(BOOT_SECTOR, SECTOR_SIZE));
processor.jump(BOOT_ADDRESS);
processor.execute();
}
}
/* Client */
class You {
public static void main(String[] args) {
ComputerFacade computer = new ComputerFacade();
computer.start();
}
}

19



20

The Observer design pattern describes how to solve such 
problems:

Define Subject and Observer objects When a subject changes state, all registered 
observers are notified and updated automatically

Observer solves following problems:

A one-to-many dependency 
between objects should be 
defined without making the 

objects tightly coupled.

It should be ensured that when 
one object changes state an open-

ended number of dependent 
objects are updated automatically.

It should be possible that one 
object can notify an open-ended 

number of other objects

Problem: Tightly coupled objects are hard to implement, 
change, test, and reuse because they refer to many different 

objects with different interfaces



This example takes keyboard input and treats each input line as an event. When a string is supplied from System.in, the method notifyObservers is called, that notifies all 
observers of the event's occurrence, in the form of an invocation of their 'update' methods.

class EventSource {
public interface Observer {
void update(String event);
}
private final List<Observer> observers = new ArrayList<>();
private void notifyObservers(String event) {
observers.forEach(observer -> observer.update(event));
}
public void addObserver(Observer observer) {
observers.add(observer);
}
public void scanSystemIn() {
var scanner = new Scanner(System.in);
while (scanner.hasNextLine()) {
var line = scanner.nextLine();
notifyObservers(line);
}
}
}
public class ObserverDemo {
public static void main(String[] args) {
System.out.println("Enter Text: ");
var eventSource = new EventSource();
eventSource.addObserver(event -> {
System.out.println("Received response: " + event);
});
eventSource.scanSystemIn();
}
}

21



22

The Chain of Responsibility design pattern describes how 
to solve such problems:

Enable to send a request to a chain of receivers 
without having to know which one handles the 

request 

The request gets passed along the chain until a 
receiver handles the request. The sender of a 
request is no longer coupled to a particular 

receiver

Chain of Responsibility solves following problems:

Coupling the sender of a request to its receiver 
should be avoided. 

In addition, it should be possible that more than 
one receiver can handle a request

Problem: Implementing a request directly within the class 
that sends the request is inflexible because it couples the 
class to a particular receiver and makes it impossible to 

support multiple receivers.



A logger is created using a chain of loggers, each one configured with different log levels.

public interface Logger {
public enum LogLevel {
INFO, DEBUG, WARNING, ERROR, FUNCTIONAL_MESSAGE, FUNCTIONAL_ERROR;
public static LogLevel[] all() { return values(); }
}
abstract void message(String msg, LogLevel severity);
default Logger appendNext(Logger nextLogger) {
return (msg, severity) -> {
message(msg, severity);
nextLogger.message(msg, severity); };
}
static Logger logger(LogLevel[] levels, Consumer<String> writeMessage) {
EnumSet<LogLevel> set = EnumSet.copyOf(Arrays.asList(levels));
return (msg, severity) -> {
if (set.contains(severity)) { writeMessage.accept(msg); }
};
}
static Logger consoleLogger(LogLevel... levels) {
return logger(levels, msg -> System.err.println("Writing to console: " + msg));
}
static Logger emailLogger(LogLevel... levels) {
return logger(levels, msg -> System.err.println("Sending via email: " + msg));
}
static Logger fileLogger(LogLevel... levels) {
return logger(levels, msg -> System.err.println("Writing to Log File: " + msg));
}
}

23



A logger is created using a chain of loggers, each one configured with different log levels.
public class ChainOfResponsibiltyDemo {
public static void main(String[] args) {
// Build an immutable chain of responsibility
Logger logger = consoleLogger(LogLevel.all())
.appendNext(emailLogger(LogLevel.FUNCTIONAL_MESSAGE, LogLevel.FUNCTIONAL_ERROR))
.appendNext(fileLogger(LogLevel.WARNING, LogLevel.ERROR));

// Handled by consoleLogger since the console has a loglevel of all
logger.message("Entering function ProcessOrder().", LogLevel.DEBUG);
logger.message("Order record retrieved.", LogLevel.INFO);

// Handled by consoleLogger and fileLogger since filelogger implements Warning & Error
logger.message("Customer Address details missing in Branch DataBase.", LogLevel.WARNING);
logger.message("Customer Address details missing in Organization DataBase.", LogLevel.ERROR);

// Handled by consoleLogger and emailLogger as it implements functional error
logger.message("Unable to Process Order ORD1 Dated D1 For Customer C1.", LogLevel.FUNCTIONAL_ERROR);

// Handled by consoleLogger and emailLogger
logger.message("Order Dispatched.", LogLevel.FUNCTIONAL_MESSAGE);
}
}

24



25

Review class notes. Additional reading: 

Examples of Design Patterns

Start a discussion on Google 
Groups to clarify your doubts.


