
Software Engineering

Dr. Raj Singh

3

Planning An objective of each and every activity, where we want to discover things
that belong to the project.

Analysis & Design Analysis of requirements and design of software is done throughout
development

Implementation Implementation is the part of the process where software
engineers actually program the code for the project.

Testing Software testing is the process to ensure that defects are recognized as soon
as possible.

Deployment Deployment starts directly after the code is appropriately tested and
approved for release to production environment.

Support Software training and support is important, as software is only effective if it is
used correctly.

Maintenance
Maintaining and enhancing software to new requirements can take
substantial time and effort as missed requirements may force redesign of the
software.

4

A structured set of activities
required to develop a software
system

Specification

Analysis, design and implementation.
Validation

Evolution

A software process model is an
abstract representation of a
process

It presents a description of a process from some
particular perspective

5

A structure imposed on the development of a software
product.

A framework that is used to structure, plan, and control
the process of developing an information system.

Several software development approaches have been used
since the origin of information technology.

6

• describes a process-related problem that is encountered during software
engineering work,

• identifies the environment in which the problem has been encountered, and
• suggests one or more proven solutions to the problem.

A process pattern

• a process pattern provides you with a template.
• a consistent method for describing problem solutions within the context of the

software process.

In more general terms

7

Stage patterns
• defines a problem associated with a framework activity for the process.

Task patterns
• defines a problem associated with a software engineering action or work task

and relevant to successful software engineering practice

Phase patterns
• define the sequence of framework activities that occur with the process, even

when the overall flow of activities is iterative in nature.

8

Prescriptive Models
Traditional

Agile Models
Modern

10

Prescriptive process models advocate an orderly approach to software
engineering

That leads to a few questions …

• If prescriptive process models strive for structure and order, are they inappropriate for a
software world that thrives on change?

• Yet, if we reject traditional process models (and the order they imply) and replace them
with something less structured, do we make it impossible to achieve coordination and
coherence in software work?

11

§ Waterfall
§ a linear framework

§ Spiral
§ a combined linear-iterative framework

§ Incremental
§ a combined linear-iterative framework or V Model

§ Prototyping
§ an iterative framework

§ Rapid application development (RAD)
§ an iterative framework

12

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

13

Developers are to follow these
phases in order:

Requirements

Software design
Implementation

Testing
Deployment

Maintenance

Each phase is dependent on
previous step

Next phase starts only if
previous step is finished.

14

Figure out
what needs to

be done

Figure out how
it will be done

Then do it Verify its done
right

Hand product
to customer

What happens
if requirements
were not right?

15

Real projects rarely follow the sequential flow that
the model proposes.

At the beginning of most projects requirements
are not clear.

Requirements cannot be changed in the middle.

The model does not accommodate flexibility very
well.

Development can take very long time and that
does not yield a working version of the system
until late in the process.

16

Validation Final
version

Development Intermediate
versions

Specification Initial
version

Outline
description

Concurrent
activities

17

Modern development processes
take evolution as fundamental, and
try to provide ways of managing,

rather than ignoring, the risk.

Requirements always evolve in the
course of a project.

Specification is evolved in
conjunction with the software

Not ideal for large systems.

Two (related) process models:

Incremental development

Spiral development

18

Rather than delivering the system as a single delivery, the development
and delivery is broken down into increments with each increment
delivering part of the required functionality.

Requirements are prioritised and the highest priority requirements are
included in early increments.

Once the development of an increment is started, the requirements are
frozen though requirements for later increments can continue to evolve.

19

Valida te
increment

Develop system
increment

Design system
architecture

Integrate
increment

Valida te
system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system

20

Customer value can be delivered with
each increment so system functionality
is available earlier.

Early increments act as a prototype to
help elicit requirements for later
increments.

Lower risk of overall project failure.

The highest priority system services
tend to receive the most testing.

21

Lack of process
visibility.

Systems are often
poorly structured.

Not ideal for large
systems.

22

§ The key characteristic of is risk
management at regular stages in
development cycle

§ Combines key
aspect of the
waterfall model &
rapid prototyping

§ Good for complex
systems.

23

Process passing through some number of
iterations.

More emphasis on risk analysis.

Requires to accept the analysis and act on it.

Willingness to spend more to fix the issues, which
is the reason why this model is often used for
large-scale internal software development.

If the implementation of risk analysis will greatly
affect the profits of the project, the spiral model
should not be used.

24

§ RAD requires minimal planning.

§ Faster development.

§ Easier to change requirements.

§ Iterative & prototyping

§ Starts with data models
and business process
modeling.

§ Requirements are
verified by prototyping,
eventually to refine the data and
process models.

25

ONE OF THE PRIMARY CAUSES OF
PROJECT FAILURE WAS THE

EXTENDED PERIOD OF TIME IT TOOK
TO DEVELOP A SYSTEM.

COSTS ESCALATED AND
REQUIREMENTS CHANGED.

AGILE METHODS INTEND TO
DEVELOP SYSTEMS MORE QUICKLY

WITH LIMITED TIME SPENT ON
ANALYSIS AND DESIGN.

27

Effective (rapid and adaptive) response to
change

Effective communication among all
stakeholders

Drawing the customer onto the team

Organizing a team so that it is in control of the
work performed

Yielding … Rapid, incremental
delivery of software

28

Is driven by customer descriptions of what is
required (scenarios)

Recognizes that plans are short-lived

Develops software iteratively with a heavy
emphasis on construction activities

Delivers multiple ‘software increments’

Adapts as changes occur

29

Agile methods are
considered

Lightweight

People-based rather than Plan-based

Several agile methods
Extreme Programming (XP) most popular

SCRUM
TDD etc…

Agile Manifesto closest to a
definition

Set of principles

Developed by Agile Alliance

30

31

Follows agile process

The phases are carried out in extremely small (or
"continuous")

First write automated tests as concrete goal for development

Then coding. Complete only if all tests passed

Design and architecture emerge out of refactoring

The incomplete but functional system is deployed or
demonstrated

Move to next part of the system

32

unit test
continuous integration

acceptance testing

pair
programming

Release

user stories
 values
 acceptance test criteria
iteration plan

simple design
 CRC cards

spike solutions
 prototypes

refactoring

software increment
project velocity computed

33

Scrum is a framework for agile software
development

Enables the creation of self-organizing teams by
encouraging co-location of all team members

Testing and documentation are on-going as the
product is constructed

Work occurs in “sprints” and is derived from a
“backlog” of existing requirements

Meetings are very short and sometimes
conducted without chairs

“demos” are delivered to the customer with the
time-box allocated

34

Scrum Team product owner, development team,
scrum master

Sprint Timeboxed iteration of a
continuous development cycle

Planning Work and effort necessary to meet
their sprint commitment

Product Backlog List of all things that needs to be
done within the project

Sprint Backlog list of all things that needs to be
done within a sprint

Daily Meeting 15-minute meeting to provide
status update

Review Review of the team's activities
during the Sprint

Retrospective What went well and continue?
What can be improved? Actions

35

36

A process that relies on the repetition of a very short
development cycle

Based on test first programming concept of XP

First write an (initially failing) automated test case that
defines a desired improvement or new function

Write minimum amount of code to pass the test

Finally re-factor the code to acceptable standards

37

38

Sense of individual responsibility

Acutely aware of the needs of team members and
stakeholders

Brutally honest about design flaws and offers constructive
criticism

Resilient under pressure

Heightened sense of fairness

Attention to detail

Pragmatic

40

SENSE OF
PURPOSE

SENSE OF
INVOLVEMENT

SENSE OF TRUST SENSE OF
IMPROVEMENT

DIVERSITY OF
TEAM MEMBER

SKILL SETS

41

A frenzied work atmosphere in which team members
waste energy and lose focus on the objectives of the
work to be performed.

High frustration caused by personal, business, or
technological factors that cause friction among team
members.

“Fragmented or poorly coordinated procedures” or a
poorly defined or improperly chosen process model
that becomes a roadblock to accomplishment.

Unclear definition of roles resulting in a lack of
accountability and resultant finger-pointing.

“Continuous and repeated exposure to failure” that
leads to a loss of confidence and a lowering of
morale.

42

the difficulty of the problem to be solved

the size of the resultant program(s) in lines of code or
function points

the time that the team will stay together (team lifetime)

the degree to which the problem can be modularized

the required quality and reliability of the system to be built

the rigidity of the delivery date

the degree of sociability (communication) required for the
project

43

Communication
• close informal verbal communication among team

members and stakeholders and continuous feedback

Simplicity
• design for immediate needs nor future needs

Feedback
• derives from the implemented software, the customer,

and other team members

Courage
• the discipline to resist pressure to design for

unspecified future requirements

Respect
• among team members and stakeholders

44

Problem complexity

Uncertainty and risk associated with the decision

Work associated with decision has unintended
effect on another project object (law of
unintended consequences)

Different views of the problem lead to different
conclusions about the way forward

Global software teams face additional challenges
associated with collaboration, coordination, and
coordination difficulties

45

46

Namespace that allows secure, private storage or
work products

Calendar for coordinating project events

Templates that allow team members to create
artifacts that have common look and feel

Metrics support to allow quantitative assessment
of each team member’s contributions

Communication analysis to track messages and
isolates patterns that may imply issues to resolve

Artifact clustering showing work product
dependencies

47

Blogs – can be used share information with team
members and customers

Microblogs (e.g. Twitter) – allow posting of real-time
messages to individuals following the poster

Targeted on-line forums – allow participants to post
questions or opinions and collect answers

Social networking sites (e.g. Facebook, LinkedIn) –
allows connections among software developers for
the purpose of sharing information

Social book marking (e.g. Delicious, Stumble,
CiteULike) – allow developers to keep track of and
share web-based resources

48

Benefits
• Provides access to all software engineering

work products
• Removes device dependencies and

available every where
• Provides avenues for distributing and

testing software
• Allows software engineering information

developed by one member to be available
to all team members

Concerns
• Reliability and security risks
• Potential for interoperability problems
• Usability and performance

49

§ Roger Pressman, Software Engineering: A Practitioner's Approach, 8th edition,
McGraw Hill, ISBN 0078022126

50

