
Software Engineering

Dr. Raj Singh

Technology and tools change frequently.

New frameworks and effective processes are emerging.

What you know today might be obsolete in near future.

The core software engineering principles do not obsolete.

These core principles are likely to help professionals throughout their career.

Researchers and professionals find new ways to implement them.

3

Be agile
Whether the process model you choose is
prescriptive or agile, the basic tenets of
agile development should govern your
approach.

Focus on quality
Every process activity, action, and task
should focus on the quality of the work
product that has been produced.

Be ready to adapt
When necessary, adapt your approach to
constraints imposed by the problem, the
people, and the project itself.

Build an effective team Build a self-organizing team that has
mutual trust and respect.

Effective communication
Projects fail because important
information falls into the cracks and/or
stakeholders fail to coordinate their
efforts to create a successful end product.

Manage change
Mechanisms must be established to
manage the way changes are requested,
assessed, approved and implemented.

Assess risk
Lots of things can go wrong as software is
being developed. It’s essential that you
establish contingency plans.

4

Listen
Try to focus on the speaker’s words,
rather than formulating your response
to those words.

Prepare Spend the time to understand the
problem before you meet with others.

Stay focused Keep the conversation moving in a
productive direction.

Take notes Write down all important points and
decisions.

Strive for collaboration
Collaboration and consensus occur
when the collective knowledge of
members of the team is combined.

Move on
Once you agree to something, move
on. If you can’t agree to something,
move on.

Negotiation It is not a contest or a game. It works
best when both parties win.

5

Understand the scope Scope provides the software team with a
destination.

Involve the customer The customer defines priorities and
establishes project constraints.

Changes are inevitable
A project plan is never engraved in stone.
As work begins, it very likely that things
will change.

Estimate based on what you
know

Provide an estimate of effort, cost, and
task duration, based on the team’s current
understanding of the work to be done.

Consider risk
If you have identified risks that have high
impact and high probability, contingency
planning is necessary.

Be realistic People don’t work 100 percent of every
day.

Track and adjust as required Software projects fall behind schedule
one day at a time.

6

Understand
The information domain of a
problem must be represented
and understood.

Define Functions The functions that the software
performs must be defined.

Define Behavior The behavior of the software
must be represented.

Define Boundaries What is in scope and what is
not must be defined.

Analyze
The analysis task should move
from essential information
toward implementation detail.

7

Design should be traceable to the requirements model.

Always consider the architecture of the system to be built.

Design of data is as important as design of processing functions.

Interfaces (both internal and external) must be designed with care.

Components should be loosely coupled to each other than the
environment.

Design representations (models) should be easily understandable.

The design should be developed iteratively

Design should change as requirements change.

8

Divide and conquer
Stated in a more technical manner,
analysis and design should always
emphasize separation of concerns
(SoC).

Consistency A familiar context makes software
easier to use.

Modularity
Separation of concerns establishes a
philosophy for software. Modularity
provides a mechanism for realizing the
philosophy.

Look for patterns If there is a recurring problem, there is
a pattern and ways to solve it.

Reusability Build reusable components. Reusability
expedites development.

Testing Test everything you implement. Good
testing drives good quality.

9

Inception ask a set of questions

Elicitation elicit requirements from all
stakeholders

Elaboration
create an analysis model that identifies
data, function and behavioral
requirements

Negotiation agree on a deliverable system that is
realistic for developers and customers

Specification Requirements specification document

Validation a requirements review mechanism

Requirements Monitoring Manage & update as required

11

Identify stakeholders

“who else do you think I should
talk to?”

Recognize multiple
points of view

Work toward
collaboration

Prepare set of questions

Who is requesting?

Who will use the solution?

How success will be measured?

12

Meetings by both
software engineers

and customers

Rules for
preparation and
participation are

established

An agenda is
suggested

A "facilitator"
controls the

meeting

The goal

Identify the problem

Propose the solution

13

Use QFD to
prioritize

requirements

informally
prioritize

requirements

formal prioritization?

Create Use-cases

yes no
El ic it requirements

write scenario

define actors

complete template

draw use-case
diagram

Conduct FAST
meetings

Make lists of
functions, classes

Make lists of
constraints, etc.

14

A statement of need and feasibility

Scope for the system or product

List of customers, users, and other stakeholders

Description of the system’s technical environment

A list of requirements and the domain constraints that apply
to each

A set of usage scenarios that provide insight into the use of
the system or product

Any prototypes to better define requirements.

15

Functional
Directly relates to requirements document.
What is being asked and what needs to be

built?

Non-Functional
Quality, performance, security, or general

system constraint.
Non-spoken requirements. All software

systems must have these.

16

Scenario-based model
Functional
Use-case

Class-based model Implied by scenarios

Behavioral model State diagram

Flow-oriented model Data flow diagram

17

A collection of user scenarios that describe the thread of usage of
a system

Each scenario is described from
the point-of-view of an “actor”

a person, device, or a system that interacts
with the software in some way

Who is the primary actor, the secondary actor (s)?

What are the pre and post conditions?

What main tasks or functions are performed?

Are there any dependencies?

How actor will interact with the system?

What information will the actor acquire, produce, or change?

18

homeowner

Arms/disarms
system

Accesses system
via Internet

Reconfigures sensors
and related

system features

Responds to
alarm event

Encounters an
error condition

system
administrator

sensors

19

Sensor

name/id
type
location
area
characteristics

identify()
enable()
disable()
reconfigure()

20

21

Identify the key
stakeholders

These are the
people who
will be
involved in the
negotiation

Determine each of
the stakeholders
“win conditions”

Win conditions
are not always
obvious

Negotiate

Work toward a
set of
requirements
that lead to
“win-win”

22

Is each requirement consistent with the overall objective for the
system/product?

Have all requirements been specified at the proper level of
abstraction?

Is the requirement really necessary or does it represent an add-on
feature that may not be essential to the objective of the system?

Is each requirement bounded and unambiguous?

Is each requirement achievable?

Does the requirements model properly reflect the information,
function and behavior of the system to be built?

Have requirements patterns been used to simplify the requirements
model?

23

Distributed debugging uncovers errors and
determines their cause

Run-time verification
determines whether
software matches its
specification

Run-time validation
assesses whether
evolving software meets
user goals

Business activity
monitoring

evaluates whether a
system satisfies business
goals

Evolution and codesign
provides information to
stakeholders as the
system evolves

24

§ Roger Pressman, Software Engineering: A Practitioner's Approach, 8th edition,
McGraw Hill, ISBN 0078022126

25

