
Software Engineering

Dr. Raj Singh

• specifies software’s operational characteristics
• indicates software's interface with other system elements
• establishes constraints that software must meet

Requirements analysis

• elaborate on basic requirements
• build models that depict user scenarios, functional activities, problem classes

and their relationships, system and class behavior, and the flow of data as it is
transformed

Requirements analysis allows the software engineer to

2

3

Scenario-based
system from the

user’s point of view

Data
shows how data are
transformed inside

the system

Class-oriented
defines objects,
attributes, and
relationships

Flow-oriented
shows how data are
transformed inside

the system

Behavioral
show the impact of

events on the system
states

4

system
description

analysis
model

design
model

5

The model should focus on requirements that are visible within the
problem or business domain. The level of abstraction should be
relatively high.

Each element of the analysis model should add to an overall
understanding of software requirements and provide insight into
the information domain, function and behavior of the system.

Delay consideration of infrastructure and other non-functional
models until design.

Minimize coupling throughout the system.

Be certain that the analysis model provides value to all
stakeholders.

Keep the model as simple as it can be.

6

Define the domain to be investigated.

Collect a representative sample of applications in the domain.

Analyze each application in the sample.

Develop an analysis model for the objects.

7

Use case / scenario defines how a user uses a
system to accomplish a particular goal.

A modeling technique that defines the features
to be implemented and the resolution of any
errors that may be encountered.

A methodology used in system analysis to
identify, clarify, and organize system
requirements.

A set of possible sequences of interactions
between systems and users in a particular
environment and related to a particular goal.

9

What are the main tasks or functions that are
performed by the actor?

What system information will the the actor
acquire, produce or change?

Will the actor have to inform the system about
changes in the external environment?

What information does the actor desire from the
system?

Does the actor wish to be informed about
unexpected changes?

10

Use-cases are written
first in narrative form

and mapped to a
template if formality is

needed

Each primary scenario
should be reviewed and

refined to see if
alternative interactions

are possible

Can the actor take some
other action at this

point?

Is it possible that the
actor will encounter an
error condition at some

point? If so, what?

Is it possible that the
actor will encounter

some other behavior at
some point? If so, what?

11

homeowner

Access camera
surveillance via the

Internet

Configure SafeHome
system parameters

Set alarm

cameras

SafeHome

12

Describe situations that may cause the system to exhibit unusual
behavior

Brainstorm to derive a reasonably complete set of exceptions for each
use case

Are there cases where a validation function occurs for the use case?

Handling exceptions may require the creation of additional use cases

13

Supplements the use case by
providing a graphical
representation

The flow of interaction between
actor and the system within a
specific scenario

enter password
and user ID

select major function

valid passwords/ID

prompt for reentry

invalid passwords/ID

input tr ies remain

no input
tr ies remain

select surveillance

other functions
may also be

selected

thumbnail views select a specif ic camera

select camera icon

prompt for
another view

select specific
camera - thumbnails

exit this function see another camera

view camera output
in labelled window

14

Allows the modeler to represent the
flow of activities described by the
use-case

Indicates which actor or analysis class
has responsibility for the action
described by an activity rectangle

enter password
and user ID

select major function

valid passwords/ID

prompt for reentry

in valid
passwords/ID

in pu t tr ies
remain

n o in pu t
tr ies remain

select surveillance

other fu n ction s
may also be

selected

th u mbn ail views select a specif ic camera

select camera icon

generate video
output

select specific
camera - thumbnails

exit th is
fu n ction

see
an oth er
camera

h o m e o w n e r c a m e ra i n t e rf a c e

prompt for
another view

view camera output
in labelled window

15

One view of requirements modeling,
called structured analysis, considers
data and the processes that transform
the data as separate entities.

Data objects are modeled in a way that
defines their attributes and relationships.

Processes that manipulate data objects are
modeled in a manner that shows how they
transform data as data objects flow through
the system.

A second approach to analysis modeled,
called object-oriented analysis, focuses
on

the definition of classes and
the manner in which they collaborate with one
another to effect customer requirements.

17

Class-based modeling
represents

objects that the system will manipulate

operations (also called methods or services)
relationships between the objects

collaborations that occur between the classes

The elements of a class-based
model include
classes and objects

attributes and operations
collaboration diagrams and packages

18

Classes are determined by underlining each noun or noun
phrase and entering it into a simple table

If the class is required to implement a solution, then it is
part of the solution space;

If a class is necessary only to describe a solution, it is part
of the problem space.

19

External entities
• (e.g. other systems, devices, people) that produce or consume information

Things
• (e.g. reports, displays, letters, signals) that are part of the information domain for

the problem

Occurrences or events
• (e.g. completion of actions) that occur within the context of system operation

Roles
• (e.g. manager, engineer, salesperson) played by people who interact with the

system

Organizational units
• (e.g. division, group, team) that are relevant to an application

Places
• (e.g. manufacturing floor) that establish the context of the problem and the

overall function

Structures
• (e.g. sensors, computers) that define a class of objects or related classes of

objects

20

Attributes describe a class that has been
selected for inclusion in the analysis

model.

Attributes describe the structure
and value of an instance of a class.

21

An operation is a method or
function that can be

performed by a class.

Operations define the
behavior of a class, what a

class can do.

Operations can perform
computation, take an action,

call another method, etc.

22

Entity classes
also called model or business
classes, are extracted directly

from the statement of the
problem

Boundary classes
are used to create the

interface that the user sees
and interacts with the

software

Controller classes
manage a “unit of work” from

start to finish

23

System intelligence should be distributed across
classes to best address the needs of the problem

Each responsibility should be stated as generally
as possible

Information and the behavior related to it should
reside within the same class

Information about one thing should be localized
with a single class, not distributed across multiple
classes.

Responsibilities should be shared among related
classes, when appropriate.

24

Classes fulfill their responsibilities
in one of two ways:

a class can use its own operations to fulfill a
particular responsibility

a class can collaborate with other classes

Collaborations identify relationships between classes

Collaborations are identified by determining whether a class can fulfill
each responsibility itself

25

Association is a (*a*)
relationship between two
classes, where one class
use another

Aggregation, a special
type of an association, is
the (*the*) relationship
between two classes.

Association is non-directional,
aggregation insists a direction.

Composition can be
recognized as a special
type of an aggregation.

Aggregation is a special
kind of an association
and composition is a
special kind of an
aggregation.
Association àAggregation
àComposition

26

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

27

WallSegment Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

28

CameraDisplayWindow

{password}

<<access>>

29

The behavioral model indicates how software will
respond to external events.

Evaluate all use-cases to fully understand the sequence
of interaction within the system.

Identify events that drive the interaction sequence and
understand how these events relate to specific objects.

Create a sequence for each use-case.

Build a state diagram for the system.

Review the behavioral model to verify accuracy and
consistency.

31

• the state of each class as the system performs its function and
• the state of the system as observed from the outside as the

system performs its function

In the context of
behavioral modeling, two
different characterizations

of states must be
considered:

• A passive state is simply the current status of all of an object’s
attributes.

• The active state of an object indicates the current status of
the object as it undergoes a continuing transformation or
processing.

The state of a class takes
on both passive and active

characteristics:

32

State
a set of observable
circum-stances that

characterizes the
behavior of a system

at a given time

State transition
the movement from
one state to another

Event
an occurrence that

causes the system to
exhibit some

predictable form of
behavior

Action
process that occurs as

a consequence of
making a transition

33

reading

locked

selecting

password
entered

comparing

password = incorrect
& numberOfTries < maxTries

password = correct

activation successful

key hit

do: validatePassword

numberOfTries > maxTries

timer < lockedTime

timer > lockedTime

34

homeowner control panel sensorssystem sensors

system
ready

reading

request lookup
comparing

result

password entered

password = correct
request activation

activation successful

locked
numberOfTries > maxTries

selecting

timer > lockedTimeA

A

Figure 8.27 Sequence diagram (partial) for SafeHome security function

activation successful

35

A flowchart to represent the
flow from one activity to
another activity.

The activity can be described
as an operation of the system.

Figure 18.7 Activity diagram for c omputePr i c e() oper a t i on

initialize totalCost

invoke
calcShippingCost

get price and
quantity

components remain on BoMList

invoke
determineDiscount

discount <= 0

discount>0 totalCost=
 totalCost - discount

taxTotal=
totalCost x taxrate

no components remain on BoMList

lineCost =
price x quantity

add lineCost to
totalCost

priceTotal =
 totalCost + taxTotal
 + shippingCost

returns:
 shippingCost

returns: discount

37

A data-flow diagram is a way of
representing a flow of a data of a
process or a system.

The DFD also provides information
about the output and input of each
entity and the process itself.

A data-flow diagram has no control
flow, there are no decision rules
and no loops.

38

§ Roger Pressman, Software Engineering: A Practitioner's Approach, 8th edition,
McGraw Hill, ISBN 0078022126

39

