
Software Engineering

Dr. Raj Singh

Encompasses the set of principles, concepts, and practices that lead to
the development of a high quality system or product

Design principles establish and overriding philosophy that guides the
designer as the work is performed

Design concepts must be understood before the mechanics of design
practice are applied

Software design practices change continuously as new methods,
better analysis, and broader understanding evolve.

3

User Interface design defines how software elements, hardware
elements, and end-users communicate

Architectural design defines relationships among the major
software structural elements

Component-level design
transforms structural elements into
procedural descriptions of software
components

Data/Class design transforms analysis classes into
implementation classes and data structures

4

Analysis Model

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams

data flow diagrams
control-flow diagrams
processing narratives

f l ow- or i ented
e l ements

behav i or a l
e l ements

c l a ss- ba sed
e l ements

sc ena r i o- ba sed
e l ements

class diagrams
analysis packages
CRC models
collaboration diagrams

state diagrams
sequence diagrams

D a t a / Cla ss D e s ign

Arc h i t e c t u ra l D e s ign

In t e rfa c e D e s ign

Com pone n t -
L e v e l D e s ign

Design Model

5

A good design leads to good
quality product

The design must implement all of
the explicit and implicit

requirements contained in the
requirements analysis model

The design should be

Easy to understand and follow.
Provide a complete picture of the software to

be implemented.
Flexible, scalable, modular, uniform,

maintainable.

6

Abstraction
•data, procedure, control

Architecture
•the overall structure of the
software

Patterns
•”conveys the essence” of a
proven design solution

Separation of concerns
•any complex problem can
be more easily handled if it
is subdivided into pieces

Modularity
•compartmentalization of data
and function

Information hiding
•controlled interfaces

Functional
independence
•single-minded function and
low coupling

Refinement
•elaboration of detail for all
abstractions

Aspects
•a mechanism for
understanding how global
requirements affect design

Refactoring
•a reorganization technique
that simplifies the design

7

Design classes
Entity, boundary, and

controller classes

Inheritance
all responsibilities of

a superclass is
immediately inherited

by all subclasses

Messages
stimulate some

behavior to occur in
the receiving object

Polymorphism
a characteristic that
greatly reduces the

effort required to
extend the design

8

Data
Data model à data
structures, database

architecture

Architectural
Application domain,

classes, relationships,
collaborations,

behaviors, patterns

Interface
User interface (UI),
components, other
systems, devices,

networks

Component
APIs, business and

service logic

Deployment
Continuous

integration and
deployement

9

A graphical representation of the software
to be built

An enabler for communication between
all stakeholders involved in the software
development

Stakeholders can use as a basis for mutual
understanding and negotiation

Facilitates early design decisions

11

target system:
Security Function

uses
uses peershomeowner

Safehome
Product

Internet-based
system

surveillance
function

sensors

control
panel

sensors

uses

12

Economy The best software is uncluttered
easy to understand.

Visibility
Architectural decisions and the
reasons for them should be
obvious.

Spacing No hidden dependencies.

Symmetry System is consistent and
balanced in its attributes.

Emergence Emergent, self-organized
behavior and control.

Documentation Document all decisions as they
are made.

13

Assess the ability to meet the quality
requirements

Identify potential risks

Economical in terms of effort and
resources

Often make use of experience-based
reviews, prototype evaluation, and
scenario reviews, and checklists

14

To avoid rework, user stories are used to
create and evolve an architectural
model (walking skeleton) before coding

Hybrid models which allow software
architects contributing users stories to
the evolving storyboard

Well run agile projects include delivery
of work products during each sprint

Reviewing code emerging from the
sprint can be a useful form of
architectural review

15

OO view
a component contains a set of

collaborating classes

Conventional view
a component contains processing

logic, data structures, and an interface

17

SRP - The Single
Responsibility Principle

A class should have one, and
only one, reason to change.

OCP - The Open Closed
Principle

You should be able to
extend a classes behavior,
without modifying it.

LSP - The Liskov
Substitution Principle

Derived classes must be
substitutable for their base
classes.

DIP - The Dependency
Inversion Principle

Depend on abstractions, not
on concretions.

ISP - The Interface
Segregation Principle

Make fine grained interfaces
that are client specific

18

Components
Simple and easy to

understand

Interfaces
Provide important
information about

communication and
collaboration

Dependencies
Model dependencies

from left to right

Inheritance
Model inheritance

from bottom (derived
classes) to top (base

classes)

Reusability
Design reusable

components

19

Adaptable Adapt itself efficiently and fast to
changed circumstances

Consistency Same output for given input
every time.

Extensibility Easy to extend components

Fast Faster development

Modularity Small easy to use modules

Simple Low complexity

Stability Tested and stable

20

Easy to use?

Easy to understand?

Easy to learn?

22

Lack of consistency

Too much memorization

No guidance or help

No context sensitivity

Poor response time

Complexity

Not easy to use

23

Place the user in control

Reduce the user’s memory load

Make the interface consistent

24

User model — a profile of all end users of the system

Design model — a design realization of the user model

Mental model — the user’s mental image of what the interface is

Implementation model — the interface look and feel

25

Understand the end-users who will
interact with the system

the tasks they must perform to do their
work

the content that is presented as part of
the interface

the environment in which these tasks
will be conducted

26

Who will be using the software?

How they will use?

Where they will use?

Training

Documentation

Help and support

27

Define interface objects and actions
(operations)

Define events (user actions)

Depict each interface state (look and
feel)

Use consistent theme

28

Response time

Help facilities

Error handling

Menu and command labeling

Application accessibility

Internationalization

29

Usability I can do it on my own and
understand

Accessibility Interface is accessible to all
intended users

Anticipation What user will do next?

Communication
Keep user informed,
meaningful messages, where
they are?

Consistency Consistent look and feel
(e.g., color, shape, layout)

Efficiency The design should optimize
the user’s work efficiency

30

Don’t Don’t be afraid of white space

Emphasize Emphasize content

Organize Organize layout elements from
top-left to bottom right

Group
Group navigation, content, and
function geographically within
the page

Don’t extend Don’t extend your real estate with
the scrolling bar

Consider Consider resolution, window size,
and device user will use

31

32

§ Roger Pressman, Software Engineering: A Practitioner's Approach, 8th edition,
McGraw Hill, ISBN 0078022126

33

