
Software Engineering

Dr. Raj Singh

3

Confirm the detailed designs
you must implement

code only from design

Prepare to measure time
spent, classified by

detailed design; design review;
coding; coding review; compiling &
repairing syntax defects; unit testing &
repairing defects found in testing

Prepare to record defects
using a form

default: major (requirements
unsatisfied), trivial, or neither
default: error, naming, environment,
system, data, other

Understand required
standards

for coding

Estimate size and time based on your past data

Plan the work in segments

4

Plan the structure and residual design for your code

Self-inspect your design

Write your code

Self-inspect your code

Test your code

Compile your code

Fix the issues don’t ignore it

5

Try to reuse first

Enforce
intentions

If code is intended
to be used in
particular ways
only, write it so
that the code
cannot be used in
any other way

6

If a member is not intended to
be used by other functions,
enforce this by making it
private or protected.

Use qualifiers such as final
and abstract etc. to enforce
intentions

7

Make all members as local as
possible

And as invisible
as possible

access private
members
through public
accessor
functions if
required.

8

Follow agreed-upon development process

Catch many errors at compile-time

Where error handling is specified by requirements,
implement as required

Anticipate all possible implementation defects

Follow a consistent policy for checking parameters

Rely mostly on good design and development process

Treat warnings as errors and don’t ignore it

§ Use concatenated words
§ e.g. cylinderLength

§ Begin class names with capitals
§ e.g. Shapes

§ Variable names begin lower case
§ e.g. cylinderlength

§ Constants with capitals
§ e.g. MAX_NAME_LENGTH

§ Data members of classes with an underscore
§ e.g. _timeOfDay

§ Use get, set, and is for accessor methods
§ e.g. getName(), setName(), isBox()

10

§ What the method does?

§ What parameters it must be passed (use @param tag)

§ What does it return?

§ Exceptions it throws (use @exception tag)

11

§ Description -- what it's used for

§ All applicable invariants
§ quantitative facts about the attribute,
§ such as "1 < _age < 130"
§ or " 36 < _length * _width < 193".

12

§ If certain attribute values will never change
§ Define as constants
§ Use static final

13

A paradigm that represents concepts as "objects" that have attributes
that describe the object and associated procedures known as methods

Objects, which are usually instances of classes, are used to interact
with one another to design applications

Objective-C, Smalltalk, Java and C# are few examples of object-
oriented programming languages

15

An object can be considered as a "thing" that can perform
a set of related activities.

The set of activities that the object performs defines the
object's behavior.

In pure OOP terms an object is an instance of a class.

16

A class is a representation of a type of object.

It describe the details of an object.

Class is composed of three things: name, attributes, and
operations.

public class Student {
private String name; // attributes
…
private void method1(){ // operations

…
}

…
}
Student objectStudent = new Student();

student object, named objectStudent, is created out of the
Student class.

17

18

SRP - The Single Responsibility Principle A class should have one, and only one, reason to change.

OCP - The Open Closed Principle You should be able to extend a classes behavior, without
modifying it.

LSP - The Liskov Substitution Principle Derived classes must be substitutable for their base classes.

DIP - The Dependency Inversion Principle Depend on abstractions, not on concretions.

ISP - The Interface Segregation Principle Make fine grained interfaces that are client specific

19

Encapsulation information hiding

Abstraction define, don’t
implement

Inheritance extensibility

Polymorphism one object many
shapes

20

Abstraction is an emphasis on the idea,
qualities and properties rather than the
particulars.

“What” rather than “How”

Generalization is the broadening of
application to encompass a larger domain
of objects of the same or different type.

Abstraction and generalization are often
used together.

21

Software
reusability

Reuse an existing
class and it’s
behavior

Create new class
from an existing
class

Absorb existing
class’s data and
behaviors
Enhance with new
capabilities

Subclass extends
superclass

More specialized
group of objects
Behaviors
inherited from
superclass

22

Classes that are too general to create real objects

Used only as abstract superclasses for concrete
subclasses and to declare reference variables

Many inheritance hierarchies have abstract
superclasses occupying the top few levels

Keyword abstract
Use to declare a class abstract
Also use to declare a method
abstract

Abstract classes normally contain one or more
abstract methods

All concrete subclasses must override all
inherited abstract methods

23

Interfaces are used to separate design from coding as class
method headers are specified but not their bodies.

Interfaces are similar to abstract classes but all methods
are abstract and all properties are static final.

Interfaces can be inherited (i.e.. you can have a sub-
interface).

An interface is used to tie elements of several classes
together.

This allows compilation and parameter consistency testing
prior to the coding phase.

Interfaces are also used to set up unit testing frameworks.

24

Facilitates adding new classes to a system
with minimal modifications

When a program invokes a method through
a superclass variable, the correct subclass
version of the method is called, based on
the type of the reference stored in the
superclass variable

The same method name and signature can
cause different actions to occur, depending
on the type of object on which the method is
invoked

25

Overloading
More than one
method in a class with
same name different
signature.
Does not depend on
return type.

Overriding
Method in a subclass
with same name and
return type.

Dynamic Binding

Also known as late
binding
Calls to overridden
methods are resolved
at execution time,
based on the type of
object referenced

§ class – a description of a set of objects

§ object – a member of a class

§ instance – same as “object”

§ field – data belong to an object or a class

§ variable – a name used to refer to a data object
§ instance variable – a variable belonging to an object
§ class variable, static variable – a variable belonging to the class as a whole
§ method variable – a temporary variable used in a method

27

§ method – a block of code that can be used by other parts of the program
§ instance method – a method belonging to an object
§ class method, static method – a method belonging to the class as a whole

§ constructor – a block of code used to create an object

§ parameter – a piece of information given to a method or to a constructor
§ actual parameter – the value that is passed to the method or constructor
§ formal parameter – the name used by the method or constructor to refer to that value

§ return value – the value (if any) returned by a method

28

§ hierarchy – a treelike arrangement of classes

§ root – the topmost thing in a tree

§ Object – the root of the class hierarchy

§ subclass – a class that is beneath another in the class hierarchy

§ superclass – a class that is above another in the class hierarchy

§ inherit – to have the same data and methods as a superclass

29

