
Software Engineering

Dr. Raj Singh

3

Software quality can be
defined as:

An effective software process applied
in a manner that creates a useful
product that provides measurable
value for those who produce it and
those who use it.

Software adheres to the requirements.

Produces expected results.

Easy to use

Error free

Easy to maintain and extend

3

An effective software process establishes the infrastructure that supports
to build a high quality software product.

The management aspects of process create the checks and balances that
help avoid project chaos—a key contributor to poor quality.

Software engineering practices allow the developer to analyze the
problem and design a solid solution—both critical to building high quality
software.

2

A useful product delivers the content,
functions, and features that the end-
user desires

It delivers these assets in a reliable,
error free way.

Always satisfies the requirements that
have been explicitly stated by
stakeholders.

It is ease of use and maintain.

7

High quality software provides benefits for the software organization and the end-
user community.

The software organization gains added value because high quality software
requires less maintenance effort, fewer bug fixes, and reduced customer support.

The user community gains added value because the application provides a useful
capability in a way that expedites some business process.

The end result is:
greater software product revenue

better profitability when an application supports a business process,
and/or

improved availability of information that is crucial for the business

3

Performance:
• Does the software deliver all content, functions, and

features that provide value to the end-user?

Feature:
• Does the software provide features that surprise and

delight first-time end-users?

Reliability:
• Does the software deliver all features and capability

without failure, reliable, and is error free?

Conformance:
• Does the software conforms to software design and

standards?

Durability:
• Can the software be maintained and corrected without

side effects?

2

General quality dimensions and factors are not
adequate for assessing the quality of an
application in concrete terms

Project teams need to develop a set of targeted
questions to assess the degree to which each
application quality factor has been satisfied

Subjective measures of software quality may be
viewed as little more than personal opinion

Software metrics represent indirect measures
of some manifestation of quality and attempt to
quantify the assessment of software quality

2

• quality planning
• formal technical reviews
• test equipment
• Training

Prevention costs include

• rework
• repair
• failure mode analysis

Internal failure costs include

• complaint resolution
• product return and replacement
• help line support
• warranty work

External failure costs are

§ The relative costs to find and repair an error or defect increase dramatically as we
go from prevention to detection to internal failure to external failure costs.

10

4

Poor quality increases risks for both developers and end-users

When systems are delivered late, fail to deliver functionality, and does not meet customer
expectations litigation ensues

Poor quality software is easier to hack and can increase the security risks for the application once
deployed

A secure system cannot be built without focusing on quality (security, reliability, dependability)
during the design phase

Low quality software is liable to contain architectural flaws as well as implementation problems
(bugs)

2

End users Developers Management

Revenue Profit Company

2

Good quality is the result of effective project
management and engineering practices

Understand the problem to be solved and be able
of creating a quality design that meets the
requirements

Eliminating architectural flaws during design can
improve quality

Project plan must include explicit techniques for
quality and change management

Series of inspections, reviews, and tests must be
used to ensure quality

2

a meeting conducted by technical
people for technical people

a technical assessment of a work
product created during the software
engineering process

a software quality assurance
mechanism

a training ground

16

A project summary or
progress assessment

A meeting intended solely to
impart information

A mechanism for political or
personal reprisal!

9

Errors: a quality problem found
before the software is released
to end users

Defects: a quality problem found
only after the software has been
released to end-users

Errors and defects have very
different economic, business,
psychological, and human
impact

§ The total review effort and the total number of errors discovered are defined as:
§ Ereview = Ep + Ea + Er
§ Errtot = Errminor + Errmajor

§ Defect density represents the errors found per unit of work product reviewed.
§ Defect density = Errtot / WPS

§ where …

5

§ Preparation effort, Ep — the effort (in person-hours) required to review a work product prior to
the actual review meeting

§ Assessment effort, Ea — the effort (in person-hours) that is expending during the actual review

§ Rework effort, Er — the effort (in person-hours) that is dedicated to the correction of those errors
uncovered during the review

§ Work product size, WPS — a measure of the size of the work product that has been reviewed (e.g.,
the number of UML models, or the number of document pages, or the number of lines of code)

§ Minor errors found, Errminor — the number of errors found that can be categorized as minor
(requiring less than some pre-specified effort to correct)

§ Major errors found, Errmajor — the number of errors found that can be categorized as major
(requiring more than some pre-specified effort to correct)

2

5

A simple desk check
of a software

engineering work
product with a

colleague

A casual meeting
(involving more than 2

people) for the
purpose of reviewing

a work product, or

The review-oriented
aspects of pair
programming

Pair programming
encourages

continuous review as a
work product (design

or code) is created.

The benefit is
immediate discovery
of errors and better

work product quality
as a consequence.

3

The objectives of an FTR are:

• to uncover errors in function, logic, or
implementation for any representation of the
software

• to verify that the software under review meets its
requirements

• to ensure that the software has been represented
according to predefined standards

• to achieve software that is developed in a uniform
manner

• to make projects more manageable

The FTR is actually a class of reviews that
includes walkthroughs and inspections.

5

Between three and five people (typically)
should be involved in the review.

Advance preparation should occur but
should require no more than two hours of
work for each person.

The duration of the review meeting should
be less than two hours.

Focus is on a work product (e.g., a portion of
a requirements model, a detailed component
design, source code for a component)

2

Review the product, not the producer. Product

Set an agenda and maintain it. Agenda

Limit debate and rebuttal, and # of participants. Limit

Enunciate problem areas, but don't attempt to solve every problem noted. Enunciate

Take written notes. Notes

Develop a checklist for each product that is likely to be reviewed. Checklist

Allocate resources and schedule time for FTRs. Resources

Conduct meaningful training for all reviewers. Conduct

Review your early reviews. Review

§ Testing is the process of exercising a program with the specific intent of finding
errors prior to delivery to the end user.

3

errors

requirements conformance

performance

an indication
of quality

2

2

To perform effective testing, you should conduct
effective technical reviews. By doing this, many
errors will be eliminated before testing commences.

Testing begins at the component level and works
"outward" toward the integration of the entire
computer-based system.

Different testing techniques are appropriate for
different software engineering approaches and at
different points in time.

Testing is conducted by the developer of the software
and (for large projects) an independent test group.

Testing and debugging are different activities, but
debugging must be accommodated in any testing
strategy.

4

Verification:
Are we building the product right?

refers to the set of tasks that ensure that
software correctly implements a specific

function

Validation:
Are we building the right product?

refers to a different set of tasks that ensure
that the software that has been built is
traceable to customer requirements.

2

We begin by ‘testing-in-the-
small’ and move toward
‘testing-in-the-large’

For conventional
software

The module
(component) is our
initial focus

Integration of
modules follows

For OO software

an OO class that
encompasses
attributes and
operations and
implies
communication and
collaboration

§ Test individual units as you
code.

30

module
to be
tested

test cases

results

software
engineer

§ Put all modules together and test
again.

31

32

Regression testing is the re-execution of some subset of tests that have already been
conducted to ensure that changes have not propagated unintended side effects

Whenever software is corrected, some aspect of the software configuration (the
program, its documentation, or the data that support it) is changed.

Regression testing helps to ensure that changes (due to testing or for other reasons)
do not introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by re-executing a subset of all test
cases or using automated capture/playback tools.

33

A common approach for creating “daily builds” for product software

• A build includes all data files, libraries, reusable modules, and engineered
components that are required to implement one or more product functions.

Software components that have been
translated into code are integrated into

a “build.”

• The intent should be to uncover “show stopper” errors that have the highest
likelihood of throwing the software project behind schedule.

A series of tests is designed to expose
errors that will keep the build from
properly performing its function.

• The integration approach may be top down or bottom up.
The build is integrated with other

builds and the entire product (in its
current form) is smoke tested daily.

4

Interface integrity internal and external module are tested
as each module is added to the software

Functional validity test to uncover functional defects in the
software

Information content test for errors in local or global data
structures

Performance verify specified performance bounds are
tested

2

Validation testing Focus is on software requirements

System testing Focus is on system integration

Alpha/Beta testing Focus is on customer usage

Recovery testing forces the software to fail in a variety of ways and verifies
that recovery is properly performed

Security testing verifies that protection mechanisms built into a system will,
in fact, protect it from improper penetration

Stress testing executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume

Performance Testing test the run-time performance of software within the
context of an integrated system

3

time required
to diagnose the
symptom and
determine the
cause

time required
to correct the error
and conduct
regression tests

2

symptom
cause

symptom and cause may be
geographically separated

symptom may disappear when
another problem is fixed

cause may be due to a
combination of non-errors

cause may be due to a system
or compiler error

cause may be due to
assumptions that everyone
believes

symptom may be intermittent

7

2

Brute force Review the logs. Test everything if nothing is clear.

Backtracking Step-by-step go over each line of code in problem area.
Back track the problem cause.

Induction Start with the symptoms of the error, possibly in the result
of one or more test cases, the error is often uncovered

Deduction Processes of elimination and refinement, to arrive at a
conclusion.

Other Interactive, print, remote, post-mortem

2

Is the cause of the bug reproduced in another part
of the program?

Before the correction is made, the source code
and design should be evaluated to assess the
impact on other areas.

What could we have done to prevent this bug in
the first place?

If you correct the process as well as the product,
the bug will be removed from the current
program and may be eliminated from all future
programs.

2

Think -- before you act to correct

Use tools to gain additional insight

If you’re at an impasse, get help from someone else

Once you correct the bug, use regression testing to uncover any side
effects

§ Roger Pressman, Software Engineering: A Practitioner's Approach, 8th edition,
McGraw Hill, ISBN 0078022126

