

Software Engineering

Dr. Raj Singh

CONCEPTS

THE FOUR P'S

Min People — the most important element of a successful project

Product — the software to be built

Process — the set of framework activities and software engineering tasks to get the job done

Project — all work required to make the product a reality

STAKEHOLDERS

Senior managers	who define the business issues that often have significant influence on the project.
A Project (technical) managers	who must plan, motivate, organize, and control the practitioners who do software work.
Practitioners	who deliver the technical skills that are necessary to engineer a product or application.
Customers	who specify the requirements and other stakeholders who have a peripheral interest in the outcome.
End-users	who interact with the software once it is released for production use.

TEAM SELECTION CONSIDERATIONS

L the difficulty of the problem to be solved

the size of the resultant program(s) in lines of code or function points

the time that the team will stay together (team lifetime)

k the degree to which the problem can be modularized

the required quality and reliability of the system to be built

the rigidity of the delivery date

the degree of sociability (communication) required for the project

AGILE TEAM PRINCIPLES

Team members must have trust in one another

The distribution of skills must be appropriate to the problem

Mavericks may have to be excluded from the team, if team cohesiveness is to be maintained

Team is self-organizing, adapting, and autonomous

THE PRODUCT SCOPE

0	Context How does the software to be built fit into a larg system, product, or business context?					
×	Constraints	What constraints are imposed as a result of the context?				
Q	Objectives	What value does it provide to end user?				
י פוודי	Function and performance	What function does the software perform? Are any special performance characteristics to be addressed?				
<u>.</u>	Clear understanding	Scope must be unambiguous and understandable by all stakeholders.				

PROBLEM DECOMPOSITION

Sometimes called partitioning or problem elaboration

Once scope is defined decompose into a set of problem classes

Decomposition process continues until all functions or problem classes have been defined

WHY PROJECTS FAIL?

- Customer needs are not understood.
- X Incomplete and unrealistic requirements and timelines.
- **Scope is poorly defined.**
- 😒 Changes are managed poorly.
- B Resource, budget, technology, and priority changes.
- **the project team lacks people with appropriate skills.**
- Practitioners avoid best practices and lessons learned.

COMMON-SENSE APPROACH TO PROJECTS

Start on the right foot.

>>>> Maintain momentum.

77 Track progress.

Make smart decisions.

Conduct a postmortem analysis.

CRITICAL PRACTICES

Formal risk management

Empirical cost and schedule estimation

Metrics-based project management

Earned value tracking

© Defect tracking against quality targets

People aware project management

PROCESS AND PROJECT METRICS

assess the status of an ongoing project

track potential risks

uncover problem areas before they go "critical"

adjust work flow or tasks

evaluate the project team's ability to control quality of software work products.

WHY DO WE MEASURE?

) E	Quality-related	focus on quality of work products and deliverables
	Productivity-related	Production of work-products related to effort expended
<u>.</u>	Statistical data	error categorization & analysis
00	Defect removal efficiency	propagation of errors from process activity to activity
	Reuse data	The number of components produced and their degree of reusability

PROCESS METRICS

PROJECT METRICS

• Effort/time per software engineering task

Errors uncovered per review hour

Scheduled vs. actual milestone dates

A Changes (number) and their characteristics

Distribution of effort on software engineering tasks

Use common sense and organizational sensitivity when interpreting metrics data.

Provide regular feedback to the individuals and teams who have worked to collect measures and metrics.

Don't use metrics to appraise individuals.

Work with practitioners and teams to set clear goals and metrics that will be used to achieve them.

Never use metrics to threaten individuals or teams.

Metrics data that indicate a problem area should not be considered "negative." These data are merely an indicator for process improvement.

Don't obsess on a single metric to the exclusion of other important metrics.

METRICS GUIDELINES

MEASURING QUALITY

ESTABLISHING A METRICS PROGRAM

Identify

business goals, entities, attributes, data, actions

Formalize

your measurement goals

Define

The measures to be used, and make these definitions operational

Prepare

a plan for implementing the measures

ESTIMATION

PROJECT PLANNING TASK SET

ESTIMATION

TO UNDERSTAND SCOPE ...

PROJECT ESTIMATION

Past (similar) project experience

Conventional estimation techniques

task breakdown and effort estimates size (e.g., FP) estimates

լի

Automated tools

ESTIMATION TECHNIQUES

Activity	СС	Planning	Risk Analysis	Engineering		Construction Release		CE	Totals
Task —>>				analysis	design	code	test		
Function									
•									
UICF				0.50	2.50	0.40	5.00	n/a	8.40
2DGA				0.75	4.00	0.60	2.00	n/a	7.35
3DGA				0.50	4.00	1.00	3.00	n/a	8.50
CGDF				0.50	3.00	1.00	1.50	n/a	6.00
DSM				0.50	3.00	0.75	1.50	n/a	5.75
PCF				0.25	2.00	0.50	1.50	n/a	4.25
DAM				0.50	2.00	0.50	2.00	n/a	5.00
Totals	0.25	0.25	0.25	3.50	20.50	4.50	16.50		46.00
% effort	1%	1%	1%	8%	45%	10%	36%		

CC = customer communication CE = customer evaluation

PROCESS-BASED ESTIMATION EXAMPLE

 Based on an average burdened labor rate of \$8,000 per month, the total estimated project cost is \$368,000 and the estimated effort is 46 person-months.

Each user scenario is considered separately for estimation purposes.

The scenario is decomposed into the set of software engineering tasks.

Each task is estimated separately.

Estimates for each task are summed to create an estimate for the scenario.

The effort estimates for all scenarios are summed to develop the effort estimate for the increment.

ESTIMATION FOR AGILE PROJECTS

PROJECT SCHEDULING

+4.+

underestimate of the effort and resources

technical difficulties

miscommunication

1

a lack of action to correct the problem

WHY ARE PROJECTS LATE?

SCHEDULING PRINCIPLES

DEFINING TASK SETS

assess the degree of rigor required

select appropriate software engineering tasks

Contraction and Antication and Anticipation and Anticipation

RFFERENCE

 Roger Pressman, Software Engineering: A Practitioner's Approach, 8th edition, McGraw Hill, ISBN 0078022126

