
Object-Oriented
Design Principles

OOP-

The Pillars of the
Paradigm

Abstraction

Encapsulation

Hierarchy

Association, Aggregation

Inheritance

Polymorphism

2

OOP-

What’s OO?

Is it using Objects?

Is it using C++, Java, C#, Smalltalk?

No, its got to be using UML?! :)

What makes a program OO?

How do you measure good design?

3

OOP-

Measuring Quality
of an Abstraction

Designing Classes & Objects

An incremental, iterative process

Difficult to design right the first time

4

OOP-

Metrics for class design
Coupling

inheritance Vs. coupling

Strong coupling complicates a system

design for weakest possible coupling

Cohesion

degree of connectivity among the elements of a single
module/class

coincidental cohesion: all elements related undesirable

Functional cohesion: work together to provide well-
bounded behavior

5

OOP-

Law of Demeter

“Methods of a class should not depend in any

way on the structure of any class, except the

immediate structure of their own class.

Further, each method should send messages to

objects belonging to a very limited set of

classes only.”

First part talks about encapsulation and cohesion
Second part talks about low coupling

6

OOP-

Tell Don’t Ask

“Procedural code gets information and then

makes decisions. OO code tells objects to do

things,” Alec Sharp in Smalltalk by Example.

Objects should take limited responsibility and

rely on others to provide appropriate service

Command-Query Separation: categorize

methods as command or query

7

OOP-

David Bock’s Example
on LoD/TDA

David Bocks’ The Paper Boy, The Wallet, and The Law Of Demeter

Failing LoD

PaperBoy’s method does:

customer.waller.totalMoney;

Honoring LoD

PaperBoy’s method does:

customer.getPayment(...);

=> drives away shiny new
Jaguar!

=> Customer controls
amount, where it’s kept
(wallet, hidden in cookie

jar,...)

8

OOP-

Train Wreck Coding
You may find code that continues to call on objects
returned by methods in sequence

customer.getAddress().getCity().getCounty()...

This indicates that you are interested in working
with objects that are farther away than those that are
your close friends

Hard to understand

Hard to debug

Lacks Cohesion

Good candidate for refactoring
9

OOP-

Bad design
Perils of a bad design

Rigidity–Hard to change, results in cascade of changes

Fragility–Breaks easily and often

Immobility–Hard to reuse (due to coupling)

Viscosity–Easy to do wrong things, hard to do right things

Needless Complexity–Complicated class design, overly

generalized

Needless Repetition–Copy and Paste away

Opacity –Hard to understand

10

OOP-

Principles
Guiding Principles that help develop better

systems

Use principles only where they apply

You must see the symptoms to apply them

If you apply arbitrarily, the code ends up with

Needless Complexity
11

OOP-

YAGNI
You Aren’t Going To Need It

You are looking out for extensibility

You are not sure if a certain functionality is

needed

Designing what you do not know fully leads to

unnecessary complexity and heavy weight

design

If you really need it, design it at that time
12

OOP-

DRY
Don’t Repeat Yourself

“Every Piece of Knowledge must have a single,

unambiguous, authoritative representation within a system”

One of the most difficult, but most seen

How many times have you see this happen

Execution

Engine

(chokes on

certain

names of

objects)

Font end

Application where

UI did business

validation.

Start out due to flaw in

Application Engine.

Once flaw was rectified,

took us weeks to fix

the UI due to duplication

of validation logic.

13

OOP-

DRY

Some times hard to realize this

It is much easier to copy, paste and modify

code to get it working the way you want it,

isn’t it

Duplicating code results in

Poor maintainability

Expensive to fix bugs/errors

Hard to keep up with change

14

OOP-

SRP
Single-Responsibility Principle

What metric comes to mind?

“A class should have only one reason to

change”

Some C++ books promoted bad design

Overloading input/output operators!

What if you do not want to display on a

terminal any more?

GUI based, or web based?
15

OOP-

SRP…

Alarm

+alert()

UI

Control
System

AlarmUI

+display(Panel)

Alarm

+alert()

+display(Panel)

UI
Control
System

Faces more frequent change

Has greater dependency (to UI related stuff)

Related topics:

MVC

Analysis model stereotypes :

Control Entity Boundary

16

OOP-

SRP at Module Level
Can be extended to module level as well

GUI Framework

V 1.0

GUI Framework
V 1.1

Component

Development

Utilities
Throw it in there

GUI Framework
V 1.2

User

Forced to accept

Irrelevant change

17

OOP-

SRP affects Reuse
Lower cohesion results in poor reuse

My brother just bought a new DVD and a

big screen TV!

He offers to give me his VCR!

I have a great TV and all I need is a VCR

Here is what I found when I went to pickup!

Tight coupling

Poor Cohesion

Bad for reuse

Disclaimer: This slide not

intended to say anything

about the brand of product

shown here as an example!

18

OOP-

Nature of code
“Software Systems change during their life

time”

Both better designs and poor designs have to

face the changes; good designs are stable

19

OOP-

OCP…

Bertrand Meyer:

“Software Entities (Classes, Modules,

Functions, etc.) should be open for extension,

but closed for modification”

20

OOP-

Characteristics of a poor design:

Single change results in cascade of changes

Program is fragile, rigid and unpredictable

Characteristics of good design:

Modules never change

Extend Module’s behavior by adding new

code, not changing existing code

OCP…

21

OOP-

Software Modules must

be open for extension

module’s behavior can be extended

closed for modification

source code for the module must not be

changed

OCP…

22

OOP-

How to make the Car run efficiently with Turbo Engine ?

Only by changing Car in the above design

OCP…

Car
Piston

Engine

23

OOP-

A class must not

depend on a

Concrete class; it

must depend on an

abstract class

Abstraction & Polymorphism
are the Key

OCP…

Car
Abstract

Engine

Piston

Engine

24

OOP-

Strategic Closure:

No program can be 100% closed

There will always be changes against which

the module is not closed

Closure is not complete - it is strategic

Designer must decide what kinds of changes to

close the design for.

This is where the experience and problem

domain knowledge of the designer comes in

OCP…

25

OOP-

Heuristics and Conventions that arise from OCP

Make all member variables private

encapsulation: All classes/code that depend on
my class are closed from change to the variable
names or their implementation within my class.
Member functions of my class are never closed
from these changes

Further, if this were public, no class will be
closed against improper changes made
by any other class

No global variables

OCP…

26

OOP-

Heuristics and Conventions that arise from

OCP...

RTTI is ugly and dangerous

If a module tries to dynamically cast a base

class pointer to several derived classes, any

time you extend the inheritance hierarchy,

you need to change the module

Not all these situations violate OCP

all the time

OCP…

27

OOP-

Inheritance is used to realize Abstraction

! and Polymorphism which are key to OCP

How do we measure the quality of inheritance?

LSP:

! “Functions that use pointers or references to

base classes must be

! able to use objects of derived classes without

knowing it”

Liskov Substitution
Principle

28

OOP-

!B publicly inherits from (“is-a”) A means

!Every object of type B is also object of type A

!What’s true of object of A is also of object of B

!A represents a more general concept than B

!B represents more specialized concept than A
!anywhere an object of A can be used, an object of B can be used

A

B

public/is-a

 Inheritance

29

OOP-

Advertised Behavior of an object

Advertised Requirements (Pre-Condition)

Advertised Promise (Post Condition)

Stack and eStack example

Behavior

30

OOP-

Design by Contract

Advertised Behavior of the

Derived class is Substitutable for that of the

Base class

Substitutability: Derived class Services Require

no more and promise no less than the

specifications of the corresponding services in

the base class

Design by Contract

31

OOP-

“Any Derived class object must be

substitutable where ever a Base class object is

used, without the need for the user to know

the difference”

LSP

32

OOP-

LSP in Java?

LSP is being used in Java at least in two places

Overriding methods can not throw new

unrelated exceptions

Overriding method’s access can’t be more

restrictive than the overridden method

for instance you can’t override a public

method as protected or private in derived

class

33

OOP-

Bad Design is one that is

Rigid - hard to change since changes affect

too many parts

Fragile - unexpected parts break upon

change

Immobile - hard to separate from current

application for reuse in another

Nature of Bad Design

34

OOP-

Ramifications
Controller Clock

Depends

for Alarm

Controller needs an alarm

Clock has it, so why not use it?

Concrete Controller depends on concrete Clock

Changes to Clock affect Controller

Hard to make Controller use different alarm (fails
OCP)

Clock has multiple responsibilities (fails SRP)

35

OOP-

Alternate Design

Dependency has been inverted

Both Controller and Clock depend on

Abstraction (IAlarm)

Changes to Clock does not affect Controller

Better reuse results as well

Controller

Clock

IAlarm

Timer

36

OOP-

Inheritance is one of the most abused concepts

in OO programming

Often, delegation may be a better choice than

inheritance

When should you use inheritance vs.

delegation?

Inheritance Vs.
Delegation

37

OOP-

If an object of B may be used in place of an

object of A, use inheritance

If an object of B may use an object of A, then

use delegation

Inheritance Vs.
Delegation...

38

OOP-

Dependency Inversion Principle

“High level modules should not depend upon

low level modules. Both should depend upon

abstractions.”

“Abstractions should not depend upon details.

! Details should depend upon abstractions.”

DIP

39

OOP-

The Founding
Principles

The three principles are closely related

Violating either LSP or DIP invariably results

in violating OCP

It is important to keep in mind these principles

to get the most out of OO development

40

OOP-

Fat Interfaces

Classes tend to grow into fat interfaces

Examples of this can been seen in several APIs

Less cohesive (fails SRP)

A Class

Interface of the class

may be split

C1 C2
I1

I2

A ClassC1 C2

Clients should not know this as a single class
They should know about abstract base classes with cohesive interfaces

Interface does not mean “all

methods in a class” 41

OOP-

Growth of an interface
IMicrowave

+cook(time)

+stop()

C1 C2

MicrowaveImpl
A few days later,

Client C2 wants it to chime

A few days later,
Client C1 wants it to notify

(workaholic client?!)

IMicrowave

+cook(time)

+stop()

+chime()

+notify(…)

C1 C2

MicrowaveImpl

Clients are forced to

use interfaces they

do not care about.

May result in greater

coupling, dependency

to more libraries

All implementations
must carry the weights

42

OOP-

ISP
Interface Segregation Principle

“Clients should not be forced to depend on

methods that they do not use”

IMicrowave

+cook(time)
+stop()

C1 C2

MicrowaveImpl2

IChimer

+chime()

INotify

+notify(…)

MicrowaveImpl1

43

OOP-

“The granularity of reuse is the same as the

granularity of release. Only components that

are released through a tracking system can be

effectively reused.”

Reuse/Release

Equivalency Principle

44

OOP-

Release

A class generally collaborates with other

classes

For a class to be reused, you need also the

classes that this class depends on

All related classes must be released together

Reuse/Release

Equivalency Principle

45

OOP-

Tracking

A class being reused must not change in an

uncontrolled manner

Code copying is a poor form of reuse

Software must be released in small chunks -

components

Each chunk must have a version number

Reusers may decide on an appropriate time to

use a newer version of a component release

Reuse/Release

Equivalency Principle

46

OOP-

“Classes within a released component should

share common closure. If one need to be

changed, they all are likely to need to be

changed. What affects one, affect all.”

Common Closure Principle

47

OOP-

A change must not cause modification to all

released components

Change must affect smallest possible number

of released components

Classes within a component must be cohesive

Given a particular kind of change, either all

classes in a component must be modified or no

class needs to be modified

Reduces frequency of re-release of component

Common Closure Principle

48

OOP-

“Classes within a released component should

be reused together. That is, it must be

impossible to separate the component in order

to reuse less than the total.”

Common Reuse Principle

49

OOP-

Components must be focused

Component must not contain classes that an

user is not likely to reuse

user may be forced to accept a new release

due to changes to unused classes

Component must be narrow

Common Reuse Principle...

50

OOP-

“The dependency structure for released

component must be a Directed Acyclic Graph.

There can be no cycles.”

Acyclic Dependence Principle

51

OOP-

If there are cycles, it becomes hard to maintain

Change ripples through

Can’t release components in small increments

Acyclic Dependence Principle

52

OOP-

“Dependencies between released components

must run in the direction of stability. The

dependee must be more stable than the

depender.”

Stable Dependency Principle

53

OOP-

A component can never be more stable than the one
it depends upon

Instability I = Ce / (Ca + Ce),

where

Ca - # of classes outside that depend upon this
class

Ce - # of classes outside that this class depends
upon

0 " I " 1

0 - ultimately stable; 1 - ultimately unstable

Stable Dependency

Principle

54

OOP-

Components should be arranged such that

components with a high I metrics should

depend upon component with low I metrics

Stable Dependency

Principle...

55

OOP-

“The more stable a component is, the more it

must consist of abstract classes. A completely

stable category should consist of nothing but

abstract classes.”

Stable Abstraction

Principle

56

OOP-

Implementation of methods change more often

than the interface

Interfaces have more intrinsic stability than

executable code

Abstraction of a Component

! A = (# of abstract classes) / (# of classes)

0 " A " 1

0 - no abstract classes; 1 - all abstract classes

Stable Abstraction

Principle

57

OOP-

Stability Vs.
Abstractness

The M
ain Sequence

A

IInstability

A
b

st
ra

ct
n

es
s

(0, 1)

(1, 0)
0

Maximally
 stable
& abstract

Maximally
 instable
& concrete

Highly
stable &
Concrete
(Rigid)

(1,1)
Highly
instable &
abstract
(Rigid)

58

OOP-

Distance from the
main sequence

D = |(A + I - 1) / #2 |

0 " D " 0.707; Desirable value of D is closed to 0

Normalized form D' = |(A + I -1)|

Calculate D value for each component

Component whose D value is not near Zero can be

reexamined and restructured

59

OOP-

Applying the Principles

Developing with OO is more than

Using a certain language

Creating objects

Drawing UML

It tends to elude even experienced developers

Following the principles while developing code helps

attain agility

Use of each principle should be justified at each

occurrence, however 60

OOP-

OO Principles and
Agile Development

These principles are more relevant during

iterative development and refactoring than

upfront design

As the requirements become clearer and we

understand the specifics the forces behind the

use of these principle become clear as well

61

