10. Structural Pattern

Venkat Subramaniam SDP-1

Structural Patterns

e Concerned with how classes and objects
are composed to form large structures

e Class Patterns use inheritance to
compose interfaces or implementation

e Object Patterns describe ways to
compose objects to realize new
functionality

Venkat Subramaniam SDP-2

Adapter Pattern

"Convert the interface of a class into
another interface clients expect. Adapter
lets classes work together that couldn’t
otherwise because of incompatible
interfaces”

Venkat Subramaniam SDP-3

Example that would benefit
from Adapter Pattern

e A Computer class uses an abstract Memory that
supports the given interface:

class Memory {virtual void store(int addr, byte value) = 0;};

A Memoryl supports this interface. Another department
has a class Memory2 that I would like to use. However,
this model does not support the above interface.

class Memory2 {...

virtual void setAddr (int address); // Set addr to access next
virtual void write(byte value);

+s

Venkat Subramaniam SDP-4

Example using Class Adapter

Computer &~——> Memory Memory?2
store(int addr, setAddr(int addr)
byte val) = 0; write(byte val)

Memoryl Memory2AD
store(int addr, store(int addr,
byte val) byteval) ¢
setAddr(addr);
write(val);

Venkat Subramaniam

SDP-5

Example using Object Adapter

Computer ~—— Memory
store(int addr,
byte val) = 0; Memory?2
setAddr(int addr)
write(byte val)
Memoryl Memory2AD
; - pMem
store(int addr, store(int addr,
byte val) byte val)

Venkat Subramaniam

pMem->setAddr(addr);
pMem->write(val);

SDP-6

When to use Adapter Pattern
e You want to use existing class, and its

interface does not match the one you
need

e You want to create a reusable class that
cooperates with unrelated or unforeseen
classes, that is, classes that don't
necessarily have compatible interfaces

e (object adapter) you need to use several
existing subclasses, but it's impractical to
adapt their interface by subclassing every
one. An object adapter can adapt the
interface of its parent class

Venkat Subramaniam SDP-7

Structure - Class Adapter

Client — Target Adaptee

Request() SpecificRequest()

Adapter

Request() {

specificRequest()

Venkat Subramaniam SDP-8

Structure - Object Adapter

Client — Target Adaptee
Request() SpecificRequest()
Adapter
adaptee
Request() ¢
adaptee->specificRequest()
Venkat Subramaniam SDP-9

Consequences of Using
Adapter

Class Adapter:

e Adapts Adaptee to Target by committing to a concrete
Adapter class

e Can’t adapt a class and all its subclasses

e Lets Adapter override some of Adaptee’s behavior
e No extra objects due to adapter usage

Object Adapter:

e Lets a single Adapter work with many Adaptees - a
class and its subclasses

e Can add functionality to all Adaptees
e Harder to override Adaptee behavior

Venkat Subramaniam SDP-10

Adapter Vs. Other Patterns

e Structure similar to Bridge, different
intent

- Bridge: separate interface from
implementation

- Adapter: change the interface

e Decorator enhances another object
without changing interface

Venkat Subramaniam SDP-11

Facade Pattern

“"Provide a unified interface to a set of
interfaces in a subsystem. Facade
defines a higher-level interface that
makes the subsystem easier to use.”

Venkat Subramaniam SDP-12

Example that would
benefit from Facade
Pattern

e A hi-tech mailer subsystem
has several classes to specify the destination of
mail, routing preference - shortest, most
reliable, most economical, etc. and delivery
options like urgent, important, confidential,
encrypted and return notification options.

e While some clients of the subsystem may be
interested in these finer classes, others may
just be interested in a subset that provides
basic functionality

Venkat Subramaniam SDP-13

Example using
Facade Pattern

Send Text Mail
/ 4
Destinationl nfo RoutingOptions DeliveryOptions
NotificationOptions oo o ContentProperties

Venkat Subramaniam SDP-14

When to use Facade
Pattern

e You want to provide simple interface to a
complex subsystem

- Clients that need no customized features do not look
beyond Facgade

e You want to decouple subsystem from clients

e You want to layer the subsystem to reduce
dependency between various levels of the
subsystem

Venkat Subramaniam SDP-15
Structure
Facade
/ 4
Desitinationl nfo RoutingOptions DeliveryOptions
NotificationOptions oo o ContentProperties

Venkat Subramaniam SDP-16

Consequences of using
Facade

¢ Shields clients from subsystem component
e Makes subsystem easier to use

e Promotes week coupling between client &
subsystem

e Helps layer subsystem

e Reduced coupling helps build time for large
systems

e No limit on clients looking beyond Facade

Venkat Subramaniam SDP-17

Facade Vs. Other Patterns

e Abstract Factory may be used with
Facade

- interface for creating subsystem objects in
subsystem independent way

e Abstract Factory may be an alternate to
Facade to hide platform-specific classes

e Mediator similar to Facade
- In Mediator, Colleague objects know Mediator

- In Facade subsystem classes do not see
Facade

e Usually Singletons

Venkat Subramaniam SDP-18

Flyweight Pattern

"Use sharing to support large number of
fine-grained objects efficiently”

Venkat Subramaniam SDP-19

Example that would
benefit from Flyweight
Pattern

e An Engineering application uses several
Chemical components

e Each component has properties like its
molecular weight, density, etc.

e The components are used all over the
application with additional information about
composition quantities, unit specifications, etc.

e Storing the components with all its properties is
prohibitively expensive

Venkat Subramaniam SDP-20

Example using
Flyweight Pattern

ComponentL.ist — > Component
getComponent(name) compute(composition)
| | |
Water (general Components) ComponentForSpecificClient
Venkat Subramaniam SDP-21

When to use Flyweight
Pattern

An application uses large number of objects
Impractical to have that many objects
State can be made extrinsic

Groups of objects may be shared with intrinsic
properties upon removal of extrinsic properties

Object identify is not an issue - not used for
comparison purposes

Venkat Subramaniam SDP-22

Consequences of using
Flyweight
e Storage saving

¢ Intrinsic state information grouped
together

e Flexibility to introduce new variations of
objects

e Run-time overhead for finding objects,
computing extrinsic state

Venkat Subramaniam SDP-23

Flyweight Vs. Other
Patterns

e Combined with Composite

e State and Strategy Patterns often
implemented as flyweights

Venkat Subramaniam SDP-24

Proxy Pattern

“"Provide a surrogate or placeholder for
another object to control access to it”

Venkat Subramaniam SDP-25

Example that would
benefit from Proxy Pattern

e An application needs to communicate
with a remote subsystem to obtain some
critical information

e The application may have code all over
that deals with communication logic and
data

e How to minimize the code for
communication logic?

e \What if not all data on the remote

subsystem is changing dynamically?
Venkat Subramaniam SDP-26

Example using
Proxy Pattern

A ppCOde > RemOteObj ect Proxy
Deals with communicationL ogic Izegpotf
Caches static information > DojeC
Venkat Subramaniam SDP-27

When to use Proxy Pattern

e A more sophisticated reference than a simple
pointer is needed

e Remote proxy provides local representative for
object in different address space

e Virtual proxy creates expensive objects on
demand

e Protection proxy controls access to original
object

e Copy-on-modify proxy guts of data not copied
until if and when data modification starts

e Smart pointers are needed to
- manage object lifetime
- loading object into memory when first referenced

vedock management for synchronization <OP.28

Consequences of using
Proxy

e Introduces a level of indirection in
accessing objects

e Indirection provides flexibility

e Incurred cost on additional object and
computations

Venkat Subramaniam SDP-29

Proxy Vs. Other Patterns

e Adapter changes interface, Proxy provides the
same interface

- protection proxy implements subset of interface -
may deny access to certain functions

e Decorator adds functionality, proxy controls
functionality

Venkat Subramaniam SDP-30

Bridge Pattern

"Decouple an abstraction from its
implementation so that the two can vary
independently”

Venkat Subramaniam SDP-31

Example that would
benefit from Bridge
Pattern

e An application wants to be able to use
one of several databases available.
However, each database has different
API. How to write one set of code such
that the code is not affected by which
database is used or when new database
is considered?

Venkat Subramaniam SDP-32

Example using Bridge

Pattern

DBAccess imp DBImp

Open() Open()

Close() Close()

Commit() Commit()

Rollback() Rollback()

/
: [|
imp->Open() DBMSLimp DBMS2Imp
= |
.- (0} O
DB1SpecificOpen() Commit() Commit()
Rollback() Rollback()

Venkat Subramaniam

SDP-33

When to use Bridge
Pattern

e You want to avoid a permanent binding between an
abstraction and its implementation - esp. when
implementation may be selected or switched at runtime

e Both the abstractions and their implementations should
be extensible by subclassing.

e Change in the implementation of an abstraction should
not impact the clients - no recompilation of client code

e In C++, you want to hide the implementation from the
.h file

e Avoids proliferation of classes

Venkat Subramaniam

SDP-34

Structure

Abstraction Imp

| mplementor

operation()p operationlmp()

imp->operationl mp()

| RefinedAbstraction |

Concreatel mpA Concreatel mpB

operationlmp() operationlmp()

Venkat Subramaniam SDP-35

Consequences of using

Bridge .

e Decoupling interface and implementation
- may be configured at runtime - may
even be changed

e Eliminates compile time dependency on
implementation

e Encourages layering - resulting in better
system

e Improved extensibility

e Shields clients from implementation
details

Venkat Subramaniam SDP-36

Bridge Vs. Other Patterns

e Abstract Factory can create
and configure a particular Bridge

e Different from Adapter Pattern:

- Adapter - making unrelated classes work
together - usually applied to systems after
redesign

- Bridge: lets abstraction and implementation
vary independently - used up-front in design

Venkat Subramaniam SDP-37

Composite Pattern

"Compose objects into tree structures to
represent part-whole hierarchies. Composite
lets clients treat individual objects and
compositions of objects uniformly”

Venkat Subramaniam SDP-38

Example that would
benefit from Composite
Pattern

e An application wants to be able to use
several types of Gates. Gates like AND,
OR are primitive, while Gates like Flip-
Flops are Containers of other gates.
Define the hierarchy of these classes
such that the client can treat all the types

of Gate classes uniformly

Venkat Subramaniam SDP-39
Example using
Composite Pattern
Gate p
trigger()
add(Gate)
remove(Gate)
getComponent(int)
AND OR Flip-Flop O——
trigger for g in children
g-trigger()
Venkat Subramaniam SDP-40

When to use Composite
Pattern

e You want to represent part-whole hierarchies of
objects

e You want the clients to be able to ignore the
differences between the compositions of
objects and individual objects. Clients will treat
all objects in the composite structure uniformly

Venkat Subramaniam SDP-41
Structure
Client| " Component
«—
Operation()
Add(Component)
Remove(Component)
GetChild(int)
L eaf Composite >——
Operation(}-+{ for g in children
g.Operation()

Venkat Subramaniam SDP-42

Consequences of using

Composite
e Primitive objects recursively composed int

more complex objects

e Where ever client code expects primitive
object, it can also take a composite

e Simplifies Client code - can treat composits
& individual objects uniformly

e Easier to add new kinds of Components
e Makes design overly general

e Harder to restrict the components of a

composite
Venkat Subramaniam SDP-43

Composite Vs. Other
Patterns

e Used for Chain Of Responsibility
e Decorator often used with Composite

e Flyweight lets you share components but
they no longer refer to their parents

e Iterator can be used to traverse
Composites

e Visitor localizes operations & behavior
that would otherwise be distributed
across composite and leaf classes

Venkat Subramaniam SDP-44

Decorator Pattern

“"Attach additional responsibilities to an object

dynamically. Decorators provide a flexible
alternative to subclassing for extending
functionality.”

Venkat Subramaniam SDP-45

Example that would
benefit from Decorator

Pattern

e A stream of bytes may be read as raw
data. It may also be read from a file. It
may be read as a buffered stream. We
may also read integer, double, etc. from
the stream. A user may use one or a
combination of the above features.

e We don’t want to create several classes
with a combination of these features

Venkat Subramaniam SDP-46

Example using
Decorator Pattern

Stream |«
byte read()
1 I \
ByteStream Filel nputStream FilteredStream [<>——
byte read() Open() byteread()
Close() % ’component->read(ﬁ

|

BufferedStream Datal nputStream

byte read() readint()
Venkat Subramaniam readDOUbIeO SDP-47

When to use Decorator
Pattern

e To add responsibilities to individual objects
dynamically and transparently, without
affecting other objects

e Responsibilities may be withdrawn

e Extension by subclassing is impractical

Venkat Subramaniam SDP-48

Structure

Component
Operation()
! {
Concreate Decorator [<>——
Component -
Operation() © component->Operation()
T
| \
Concreate Concreate
DecoratorA O[II))eerca?iroa:]c())r B Decorator::Operation()
addedState © .
addedBehavior AddedBehavior();
Venkat Subramaniam SDP-49

Consequences of using
Decorator

e Flexibility compare to static inheritance

- Functionality may be added / removed at
runtime

e You only get features you ask for
e Decorator acts as transparent enclosure

e Can't rely on Object identify
e Lots of little objects

Venkat Subramaniam SDP-50

Decorator Vs. Other
Patterns

e Adapter changes objects interface.
Decorator changes only its
responsibilities

e Decorator is not intended for object
aggregation like Composite

e Strategy and Decorator are used to
change an object - Strategy lets you
change the guts of an object - Decorator
its skin

Venkat Subramaniam SDP-51

