
1. Software Systems Complexity, 
OO Paradigm, UML

Software Systems Complexity

Inherent Arbitrary Complexity
• Problem Domain Complexity

– Expressing the Requirements
– Changing Requirements
– System Evolution - a necessity

• Managing the Development Process
• Possible Flexibility
• Characterizing the Behavior of Discrete Systems



Software Systems Complexity

Managing the Complexity

Divide & Rule

Decomposition
• Algorithmic Decomposition
• Object-Oriented Decomposition

Example Case Study

Example

Department of Transportation want you to build a 
software program that will inspect a Car based on 
some criteria (like checking the lights, emission 
control [less than 0.1% CO level], etc.) and print an 
inspection sticker.



Algorithmic Decomposition
Get Owner Name, Address, etc.

Check Insurance Papers

Check Cars Light, Honk, Wiper

Test Drive

Check Emission below 0.1%

Print Inspection Sticker

Implementation - Procedural Language
getOwnerInfo();

checkInsurancePapers();

struct Car* carPtr = readCarInfo();

InspectCar(carPtr);

printCarInspectionSticker(carPtr);

InspectCar(carPtr) performs the following:
checkLightsHonk(carPtr);
testDrive(carPtr);
checkCarEmission(carPtr);  /*Check below 0.1%*/



Implementation of Algorithm using Objects
Vehicle aVehicle = getVehicle();

Owner owner = aVehicle.getOwner();

owner.getOwnerInfo();

owner.getInsurance().getInsuranceInfo();

aVehicle.InspectVehicle();

InspectVehicle performs the following:
checkLightsHonk();
checkEmission(); // Whatever is the level
printInspectionSticker();

Whats the point ?!

• Inspect not just Cars - inspect Trucks and RVs



Procedural Approach - Ripple Effect
switch (VehicleType) // Procedural approach
{

case CAR :
readCarInfo, check Emission < 0.1%, etc.
break;

case RV:
readRVInfo, check Emission < 0.05%, 
check Sewer System
break;

}

OO Approach
• No Change to your existing code (almost)
• Merely extend the Object Model

Vehicle

Car

Owner

Insurance
RV Truck



Object-Oriented Paradigm

Collection of Discrete Objects - Data & Behavior
OO Paradigm

• Abstraction
• Encapsulation
• Classes & Objects
• Hierarchy

– Inheritance hierarchy (“is-a”)
– Part of hierarchy (“has a”)

• Polymorphism

Abstraction

“A simplified description ... of a system that 
emphasizes some of the system’s details ... while 
suppressing others”

“An abstraction denotes the essential characteristics 
of an object that distinguish it from all other kind 
of objects and thus provide crisply defined 
conceptual boundaries, relative to the perspective 
of the viewer”



Encapsulation

Information hiding
Interface - Implementation
Behavior & Data

“Encapsulation is the process of compartmentalizing 
the elements of an abstraction that constitute its 
structure and behavior; encapsulation serves to 
separate the contractual interface of an abstraction 
and its implementation”

Hierarchy

“Hierarchy is a ranking of abstractions”

Inheritance : expresses “is-a” or “Kind-of”
relationship

• Extensibility & Reusability

Part-of: expresses that an object is an aggregate of 
other objects



Polymorphism

Hiding alternative procedures behind a Common 
Interface

Send a Message to an object - Polymorphism 
guarantees that the correct/proper implementation is 

invoked.

OO Programming Languages

Traditional
Structured

Object-
based

Class-
based

Pure
Object-
Oriented

Hybrid
Object-
Oriented

FORTRAN 
C 

Pascal
COBOL

Ada CLU Java
Smalltalk

Eiffel
Simula
Trellis

C++
Objective-C

CLOS
Object- Pascal

Object-COBOL



OOPLs

• Pure OOPLs
– Supports the Paradigm
– Enforces the Paradigm

• Hybrid OOPLs
– Supports the Paradigm
– Not Strictly Enforced

Unified Modeling Language (UML)

• Notations -
Express & Communicate Classes, Relationships, etc.

• OMG  - Booch, Rumbaugh, Jacobson, et. al. 

• Notations Subset Introduced When Used



OO Features in C++

• User-defined data types - Classes
• Inheritance 
• Virtual Functions (Polymorphism)
• Function Overloading
• Operator Overloading
• Templates

Other Features in C++
• Strong Type Checking
• Flexible Declarations
• Scope & Scope resolution ::
• const declaration
• void & void pointers
• Enhanced I/O
• Reference
• new & delete



Example C++ Program
The C++ standard library provides objects that facilitate easy input/output. 

#include <iostream.h> // Include the standard iostream library header file
void main()
{

cout << "Hello World" << endl; // print Hello World on a line

cout << "Please enter an integer:"; // print a prompt message

int intval; // declare a variable of type int

cin >> intval; // input an integer value from the keyboard (stdin)

cout << "You entered " << intval << endl; // Output a message with the value provided
}
Output:
Hello World
Please enter an integer:6
You entered 6

Lab Work: Details provided on-line.


