A Perspective View And Survey Of Meta-Learning

Ricardo Vilalta and Youssef Drissi
IBM T.J. Watson Research Center
19 Skyline Dr.
Hawthorne, NY., 10532 U.S.A.
Email: vilalta@us.ibm.com, yousffd@us.ibm.com

Abstract. The first part of this paper provides a perspective view of meta-learning in which the goal is to build self-adaptive learning algorithms. The idea is to improve the learning bias dynamically through experience by the continuous accumulation of meta-knowledge. The second part of this paper provides a survey of meta-learning as reported by the machine-learning literature. We find that different researchers hold different views of what the term meta-learning exactly means. Despite different views and research lines, a question remains constant: how can we exploit knowledge about learning (i.e., meta-knowledge) to improve the performance of learning algorithms? Clearly the answer to this question is key to the advancement of the field and continues being the subject of intensive research.

Keywords: inductive learning, classification, meta-knowledge.

1. Introduction

Meta-learning studies how learning systems can increase in efficiency through experience; the goal is to understand how learning itself can become flexible according to the domain or task under study. All learning systems work by adapting to a specific environment, which reduces to imposing a partial ordering or bias on the set of possible hypotheses explaining a concept (Mitchell, 1980). Meta-learning differs from base-learning in the scope of the level of adaptation: meta-learning studies how to choose the right bias dynamically, as opposed to base-learning where the bias is fixed a priori, or user parameterized. In a typical inductive-learning scenario, applying a base-learner (e.g., decision tree, neural network, or support vector machine) over some data produces a hypothesis that depends on the fixed bias embedded in the learner. Learning takes place at the base-level because the quality of the hypothesis normally improves with an increasing number of examples. Nevertheless, successive applications of the learner over the same data always produces the same hypothesis, independently of performance; no knowledge is extracted across domains or tasks (Pratt and Thrun, 1997).

Meta-learning aims at discovering ways to dynamically search for the best learning strategy as the number of tasks increases (Thrun,
1998; Rendell et al., 1987B). A computer program qualifies as a learning machine if its performance improves with experience (Mitchell, 1997; Cohen and Feigenbaum, 1989). Experience is best understood as the knowledge gained from the analysis of several tasks; the definition is not limited to the ability to refine a hypothesis after presenting examples that belong to one task. Hence, meta-learning advocates the need for continuous adaptation of the learner at different levels of abstraction. If a base-learner fails to perform efficiently, one would expect the learning mechanism itself to adapt in case the same task is presented again. Thus, learning can take place not only at the example (i.e., base) level, but also at the across-task (i.e., meta) level.

After describing our own perspective view of meta-learning and posing some interesting challenges for future research, this paper provides a survey of the field as reported in the machine-learning literature. Some areas of study that bear close relationship to meta-learning include building a meta-learner of base-learners (Section 4.1), selecting an inductive bias dynamically (Section 4.2), building meta-rules matching task properties with algorithm performance (Section 4.3), inductive transfer and learning to learn (Section 4.4), learning classifier systems (Section 4.5), and others (Section 4.6). Our survey shows how the term meta-learning means differently to different research groups; we find that each of the areas mentioned above covers only a few pieces in the big puzzle conformed by the field of meta-learning. Our ultimate goal is to see the field progressing towards a uniform and coherent view.

This paper is organized as follows. Section 2 gives definitions and background information in classification. Section 3 provides our own perspective view of the nature and potential avenues of research in meta-learning. Section 4 is a survey of meta-learning as reported in the machine-learning literature. Section 5 ends with discussion and conclusions.

2. Preliminaries

Our study is centered on the classification problem exclusively. The problem is to learn how to assign the correct class to each of a set of different objects (i.e., events, situations). A learning algorithm L is first trained on a set of pre-classified examples $T_{\text{train}} : \{ (\mathbf{X}_i, c_i) \}_{i=1}^m$. Each object \mathbf{X} is characterized by features, and can be represented as a vector in an n-dimensional feature space, $\mathbf{X} = (X_1, X_2, \cdots, X_n)$. Each feature X_k can take on a different number of values. \mathbf{X}_i is labeled with class c_i according to an unknown target function F, $F(\mathbf{X}_i) = c_i$ (we assume a deterministic target function, i.e., zero-bayes risk). In
classification, each \(c_i \) takes one of a fixed number of categorical values.

\(T_{\text{train}} \) will consist of independently and identically distributed (i.i.d.) examples obtained according to a fixed but unknown joint probability distribution \(\Phi \) in the space of possible feature-vectors \(\mathcal{X} \). The goal in classification is to produce a hypothesis \(h \) that best approximates \(F \), i.e., that minimizes a loss function (e.g., zero-one loss) in the space of feature vectors and classes, \(\mathcal{X} \times \mathcal{C} \), according to distribution \(\Phi \).

Classification begins when learning algorithm \(L \) receives as input a training set \(T_{\text{train}} \) and conducts a search over a hypothesis space \(\mathcal{H}_L \) until it finds a hypothesis \(h \), \(h \in \mathcal{H}_L \), that approximates the true function \(F \). Thus a learning algorithm \(L \) maps a training set into a hypothesis, \(L : T \rightarrow \mathcal{H}_L \), where \(T \) is the space of all training sets of size \(m \). The selected hypothesis \(h \) can then be used to guess the class of unseen examples.

Learning algorithm \(L \) embeds a set of assumptions or bias that affects the learning process in two ways: it restricts the size of the hypothesis space \(\mathcal{H}_L \), and it imposes an ordering or ranking over all hypotheses in \(\mathcal{H}_L \). The bias of a learning algorithm \(L_A \) is stronger than the bias of another learning algorithm \(L_B \) if the size of the hypothesis space considered by \(L_A \) is smaller than the size of the hypothesis space considered by \(L_B \) (i.e., if \(|\mathcal{H}_{L_A}| \leq |\mathcal{H}_{L_B}| \)). In this case the bias embedded by \(L_A \) conveys more extraneous information (Watanabe, 1969) than the bias in \(L_B \), which enables us to narrow down the number of candidate hypotheses estimating the true target concept \(F \). We say the bias of a learning algorithm is correct if the target concept is contained in the hypothesis space (i.e., if \(F \in \mathcal{H}_L \)). An incorrect bias precludes finding a perfect estimate to target concept \(F \).

3. A Perspective View of Meta-Learning

In this section we lay down some definitions and concepts that will be helpful to compare some of the current research directions adopted in meta-learning. Our own view of the field advocates the construction of self-adaptive learners.

In base-learning, the hypothesis space \(\mathcal{H}_L \) of a learning algorithm \(L \) is fixed. Applying a learning algorithm (e.g., decision tree, neural network, or support vector machine) over some data produces a hypothesis that depends on the fixed bias embedded by the learner. This implies a learning algorithm can only learn efficiently over a limited number of tasks. More formally, let a learning task \(s \) be defined as

\footnote{We limit our study to hypothesis spaces that are finite.}
a 3-tuple, $s = (F, m, \Phi)$, comprising a target concept F, a training-set size m, and a sample distribution Φ from which the examples in a training set are drawn. If we represent the space of all possible learning tasks (i.e., the cross product of all target concepts, training-set sizes, and distributions) as S, then algorithm L can learn efficiently over a limited region R_L in S that favors the bias embedded in L; algorithm L can never be made to learn efficiently over all tasks in S as long as its bias remains fixed (Schaffer, 1994; Watanabe, 1985; Wolpert, 1996; Rao et al., 1995).

3.1. Random vs Structured Tasks

One may rightly argue that the space of all tasks contains many random regions; failing to learn over those regions carries in fact no negative consequences. For this reason, we will assume R_L comprises a subset of structured tasks, $S_{\text{struct}} \subset S$, where each task is non-random and can be ascribed a low degree of complexity. Here we simply want to distinguish between two sets of tasks: structured and random. We attempt to give a more formal definition of both types of tasks.

One dimension along which we can differentiate between structured and random tasks lies in the expected amount of data compression that can be obtained over the training sets. Structured tasks S_{struct} denote regular patterns over the training sets that commonly lead to the discovery of concise representations. Random tasks, on the other hand, are characterized by many irregularities; long representations are then necessary to reproduce the original body of data. But how can we determine the degree of structure (conversely the degree of randomness) of a task? Let us assume we have a measure of complexity K applicable to any task. We can classify all possible tasks according to its complexity in the following way. For a fixed concept F, training-set size m, and distribution Φ, we denote the complexity of a tasks s as

$$
K(s) = E_{\Phi}(K_{F,m}(T_i)) = \sum_{T_i \text{ of size } m} P(T_i) K_{F,\Phi,m}(T_i)
$$

(1)

where $P(T_i)$ is the probability of generating training set T_i according to Φ, and $K_{F,m}(T_i)$ is the value of the complexity (i.e., degree of randomness) of training set T_i (conditioned on F), for a fixed size m, and a fixed distribution Φ. This definition can serve to classify the universe of all possible tasks according to K.

2 A task can be seen as a random variable where each possible outcome is a training set of size m drawn according to distribution Φ; examples are labeled according to concept F.

Vilalta and Drissi

metal.tex; 29/03/2002; 12:41; p.4
The nature of \(K \) is left unspecified. Ideally one would use a measure such as \textit{Kolmogorov Complexity} (Vitanyi, 1996; Li and Vitanyi, 1992; Li and Vitanyi, 1997; Vitanyi, 1997). Given a training set \(T \), the Kolmogorov complexity of \(T \), \(K(T) \), is defined as the length of the shortest effective description of \(T \). More rigorously, \(K(T) \) is the length of the shortest binary program from which the data can be reconstructed (Vitanyi, 1997). Unlike other measures (e.g., classical information theory) Kolmogorov complexity considers the maximal degree of compressibility over the data under analysis.

3.2. \textbf{GOALS IN META-LEARNING}

One goal in meta-learning is to learn what causes \(L \) to dominate in region \(R_L \). The problem can be decomposed in two parts: 1) determine the properties of the tasks in \(R_L \) that make \(L \) suitable for such region, and 2) determine the properties of \(L \) (i.e., what are the components contained by algorithm \(L \) and how they interact with each other) that contribute to the domination of \(R_L \). A solution to the problem above would provide guidelines for choosing the right learning algorithm on a particular task. As illustrated in Figure 1, each task \(s_i \) may lie inside or outside the region that favors the bias embedded by a learning algorithm \(L \). In Figure 1, task \(s_1 \) is best learned by algorithm \(L_A \) because it lies within the region \(R_{LA} \). Similarly, \(s_2 \) is best learned by algorithm \(L_B \), whereas \(s_3 \) is best learned by both \(L_A \) and \(L_B \). A solution to the meta-learning problem can indicate how to match learning algorithms with task properties, in this way yielding a principled approach to the dynamic selection of learning algorithms.

In addition, meta-learning can solve the problem of learning tasks lying outside the scope of available learning algorithms. As shown in Figure 1, task \(s_4 \) lies outside the regions of both \(L_A \) and \(L_B \). If \(L_A \) and \(L_B \) are the only available algorithms at hand, task \(s_4 \) is prone to receiving a poor concept estimation. One approach to solve the problem above is to use a meta-learner to combine the predictions of base-learners in order to shift the dominant region over the task under study. In Figure 1, the goal would be to embed the meta-learner with a bias favoring a region of tasks that includes \(s_4 \). Section 4 describes current research heading in this direction.

3.3. \textbf{SELF-ADAPTIVE LEARNING ALGORITHMS}

The combination of base-learners by a meta-learner offers no guarantee of covering every possible (structured) task of interest. We claim a potential avenue of research in meta-learning is to provide the foundations to construct self-adaptive learning algorithms, i.e., learning algorithms
that change their internal mechanism according to the task under analysis. In Figure 1, this would mean enabling a learning algorithm to move along the space of structured concepts s_{struct} until the algorithm learns to cover the task under study. We assume this can be achieved through the continuous accumulation of meta-knowledge indicating the most appropriate form of bias for each different task. Beginning with no experience, the learning algorithm would initially use a fixed form of bias to approximate the target concept. As more tasks are observed, however, the algorithm would be able to use the accumulated meta-knowledge to change its own bias according to the characteristics of each task. This is one kind of life-long learning (Thrun, 1998).

Figure 2 is a (hypothetical) flow diagram of a self-adaptive learner. The input and output components to the system are a training set and a hypothesis respectively. Each time a hypothesis is produced, a performance assessment component evaluates its quality. The resulting information becomes a new entry in a performance table; an entry contains a vector of meta-features characterizing the training set, and the bias employed by the algorithm if the quality of the hypothesis exceeds some acceptable threshold. We assume the self-adaptive learner contains a meta-learner that takes as input the performance table and generates a set of rules of experience (i.e., meta-hypothesis) mapping any training set into a form of bias. The lack of rules of experience at the beginning of the learner’s life would force the mechanism to use a fixed form of bias. But as more training sets are observed, we expect
the expertise of the meta-learner to dominate in deciding which form of bias best suits the characteristics of the training set.

The self-adaptive learner described in Figure 2 poses major challenges to the meta-learning community (a more detailed analysis of these challenges is provided by Vilalta (2001)). Briefly, we need to define how can we assess the quality of a hypothesis, or how can we assess the quality of the bias employed by the the learning algorithm. Also we need to define how can we characterize a task in terms of relevant meta-features. Finally, one must be aware of a problem related to the flexibility of the self-adaptive learner in Figure 2: whereas the bias is now selected dynamically, the meta-learner is not self-adaptive and employs a fixed form of bias. Clearly the meta-learner can be seen as a learning algorithm too, but lacking the adaptability ascribed to the base learner. Ideally we would like the meta-learner to be self-adaptive, i.e., to improve through experience. One solution could be to continue with the same logical fashion as in Figure 2, and define a meta-meta-learner helping the meta-learner improve through experience. The problem, however, does not disappear because the meta-meta learner would exhibit a fixed form of bias. The challenge lies on how to stop the apparently infinite chain of meta-learners needed to achieve complete flexibility in the selection of bias.

The problems just described provide interesting goals that we hope will stimulate the research community to contribute to the field of meta-learning.
4. A Survey of Meta-Learning

This section provides a survey of meta-learning as reported in the machine-learning literature. Any survey of this kind is prone to omit relevant work and adopt a single-minded view for which we offer our apologies. Our goal is simply to unify current views and definitions of what is meant by the term meta-learning.

4.1. A Meta-Learner of Base-Learners

Originally proposed by Wolpert (1992), one common approach to meta-learning is known as stacked generalization. Here, a set of q base-learners are applied to a training set $T_{\text{train}} = \{(\mathbf{X}_i, c_i)\}_{i=1}^m$ to produce q hypotheses, $\{h_j\}_{j=1}^q$, also called level-0 generalizers. Meta-learning takes place when training set T_{train} is redefined into a new set T'_{train}. The redefinition replaces each vector \mathbf{X}_i with a new vector $\tilde{\mathbf{X}}_i$ that contains the class predicted by each of the q hypotheses on \mathbf{X}_i:

$$T'_{\text{train}} = \{\tilde{\mathbf{X}}_i, c_i\} = \{(h_1(\tilde{\mathbf{X}}_i), h_2(\tilde{\mathbf{X}}_i), \ldots, h_q(\tilde{\mathbf{X}}_i), c_i)\} \quad (2)$$

The new training set T'_{train} serves as input to a set of meta-learners, which produce a new set of hypotheses or level-1 generalizers. The redefinition of T_{train} into T'_{train} is done via k-fold cross validation (Kohavi, 1995).

Stacked generalization is considered a form of meta-learning because the transformation of the training set conveys information about the predictions of the base-learners (i.e., conveys meta-knowledge). We do not consider as part of meta-learning other model-combination techniques where the idea is to produce variations of the data (e.g., bagging (Breiman, 1996) and boosting (Freund and Schapire, 1996)), although definitions of relevant meta-features have been obtained from this work. Stacked generalization has a severe limitation in that both base-learners and meta-learners have a fixed form of bias, i.e., no dynamic selection of bias takes place. The dominant (task) region for the meta-learner may be different from the base-learners, but ultimately fixed (Section 3 and Figure 1).

Research in the stacked-generalization paradigm investigates what base-learners and meta-learners produce best empirical results (Chan and Stolfo, 1998; Chan and Stolfo, 1993; Chan, 1996). After transforming the original training set, each example contains the predictions of the base-learners, but it may also contain the original features. Results show how certain combinations of learners and meta-learners can yield significant improvements in accuracy.
Several variations to stacked generalization have been explored. For example, Chan and Stolfo (1998) experiment with a modified approach where each base-learner is trained with a fraction of the total data. While running each learning algorithm in parallel, a hierarchical tree structure is built where each leaf is a level-0 generalizer and each internal node is a high-level generalizer (see reference for details). This strategy outperformed a majority-voting approach. In a similar vein, Prodromidis and Stolfo (1999B) build a tree of generalizers from metadata and then prune the tree to eliminate redundant generalizers. The same idea is studied in a distributed system (Prodromidis et al., 1999; Prodromidis and Stolfo, 1999A). Todorovski and Dzeroski (2000) introduce meta-decision-trees, where each leaf of the meta-tree comprises a hypothesis for prediction. Domingos (1997,1998) shows empirical evidence supporting the claim that a meta-learner can improve the accuracy of base-learners while retaining comprehensibility.

The study of how to combine the predictions of base-learners has produced novel meta-features; these meta-features are useful to understand and predict the accuracy of the meta-learner. For example, Fan et al. (1999) introduce a conflict-based measure that indicates the proportion of examples in the training set accurately classified by the base-learners. Other meta-features include coverage (Brodley and Lane, 1996) –fraction of examples for which at least one of the base classifiers produces correct predictions; diversity (Brodley and Lane, 1996; Ali and Pazzani, 1996) –degree of difference in the predictions of the base-learners; and correlated error (Ali and Pazzani, 1996) –fraction of examples for which two base-learners make the same incorrect prediction.

4.2. DYNAMIC SELECTION OF BIAS

Dynamic selection of bias enables a learning algorithm to shift its region of expertise along the set of (structured) tasks (Figure 1). The goal is to modify the hypothesis space to have a better coverage of the task under analysis. Meta-learning is a necessary component during dynamic-bias selection, often acting as a guideline in the search over the bias space.

An introduction to the field of dynamic-bias selection is given by DesJardins and Gordon (1995A). The authors develop a framework for the study of dynamic bias as a search in three different tiers (DesJardins and Gordon, 1995B). The first tier refers to a search over a hypothesis space \mathcal{H}_L where a learning algorithm L looks for the best hypothesis approximating the target concept; most learning algorithms assume this space fixed. For dynamic bias selection to take place, a learning algorithm L must search in a second tier, where the strength and size of
\(\mathcal{H}_L \) can be modified separately (Section 2). A third tier helps to modify the meta-spaces defined at the second tier. Although no more tiers are introduced in this framework, the problem of where to stop building more tiers (i.e., more meta-meta-spaces) is evident (Section 3).

One approach to the dynamic selection of bias is to change the representation of the feature space by adding or removing features. One of the earliest systems using a form of dynamic bias is STABB (Utgoff, 1986). With the goal of generating a hypothesis space that is strong and correct (Section 2), STABB continually exerts a form of change of representation. As an example, the system is able to construct a new feature as the disjunction of two original features; additional features increase the size of the hypothesis space and thus help to alleviate the problem of a strong hypothesis space (i.e., of having few available hypotheses). In contrast, Gordon (1992) shows how to weaken the hypothesis space by eliminating features when bias is deemed inappropriate. Hence, bias can be made stronger by eliminating features or weaker by restoring features (Gordon, 1990). In addition one can filter out hypotheses using meta-rules as a form of explicit bias selection (Gordon and Perlis, 1989).

Baltes (1992) describes a framework for dynamic selection of bias as a case-based meta-learning system; concepts displaying some similarity to the target concept are retrieved from memory and used to define the hypothesis space.

Dynamic-bias selection applies to the algorithm-selection problem. Rendell et al. (1987A) describe the VBMS system that learns how to select a learning algorithm depending on the properties of the task. VBMS uses a dynamic similarity measure that evolves with experience; as more tasks are attempted VBMS learns relationships between task characteristics and biases embedded in the learning algorithms (Rendell et al., 1987B). The task characteristics used by VBMS are simple (e.g., number of features), and bias is not modified but rather depends on the available learning algorithms. A related approach is described by Bruna (2000) in a rule-based system. Here, predicting the class of new examples depends on the quality of each rule; such quality is updated during the testing phase: a dynamic process that changes bias in the rule-selection policy.

4.3. Meta-Rules Matching Domains With Algorithm Performance

One important facet of meta-learning is to provide guidelines of how to relate a learning algorithm with those domains in which the algorithm performs well. Most often the main performance criterion is predictive accuracy, but in reality other criteria may be equally im-
portant, e.g., computational complexity, expressiveness, compactness, comprehensibility, etc. (Graud, 1998).

The general approach consists of defining a set of domain characteristics or meta-features that are relevant to the performance of a learning algorithm (Michie, 1994); these meta-features enable us to build a meta-domain T_{meta} relating domain characteristics with algorithm performance (once a sufficient number of domains has been analyzed). Finally, we can induce a set of rules using a meta-learner over T_{meta} to discover the conditions under which a learning algorithm outperforms others.

Under this framework, Aha (1992) aims at obtaining rules specifying when a learning algorithm outperforms others significantly. Examples of domain characteristics are the degree of correlation between features and the target concept, the distribution of examples within concepts disjuncts, the distribution of examples among concepts, etc. The rules reveal the conditions under which significant differences in performance hold. Gama and Brazdil (1995) extract domain characteristics such as the number of examples, number of attributes, number of classes, standard deviation ratio for each feature, skewness, kurtosis, noise-signal ratio, etc., to generate meta-rule models. Similar work is reported by Brazdil (1998) who proposes using meta-learning as a pre-processing step to model selection; experimentation on accuracy performance is then used to select the best algorithm. Meta-rules matching domain characteristics with inductive bias have also been crafted manually (Brody, 1993; Brody, 1994). In addition, a domain may be represented by properties of the final hypothesis rather than the data itself. For example, Bensusan et. al (2000) measure properties of a decision-tree, e.g., nodes per feature, maximum tree depth, shape, tree imbalance, etc., and convert them into meta-features.

4.3.1. Finding Regions In The Feature Space And Meta-Feature Space

Instead of using meta-learning to select a learning algorithm for a particular domain, a more granular approach consists of selecting a learning algorithm for each individual test example. The idea is to choose a learning algorithm displaying best performance around the neighborhood of the test example (Merz, 1995A; Merz, 1995B). Algorithm selection is done according to best performance, using cross-validation history.

A slight variation to the approach above is to look at the neighborhood of a test example in the space of meta-features. Specifically, after learning from several domains, one can construct a meta-domain T_{meta}, where each element pair is a description of a domain (meta-feature vector) and a class label corresponding to the best-performance
learning algorithm on that domain. When a new domain arrives, we can gather the \(k \)-nearest neighbor examples in \(T_{\text{meta}} \) to select the learning algorithm with best average performance (Keller et. al, 2000). Meta-features like accuracy, storage space, and running time can be used for performance evaluation (Keller et. al, 2000). A similar approach is defined by Brazdil and Soares (2000), in which the learning algorithms corresponding to the \(k \)-nearest neighbor domains are ranked as a function of accuracy and running time.

4.3.2. Landmarking

A recent piece of work in meta-learning is called *landmarking*. The idea is to have two sets of learning algorithms \(Q_{\text{landmark}} \) and \(Q_{\text{pool}} \). The first set, \(Q_{\text{landmark}} \), is composed of simple learners that exhibit significant differences in their mechanism. We will use their accuracy (or error rate) to characterize a domain, and refer to them as *landmarkers*. The second set, \(Q_{\text{pool}} \), contains advanced learners, one of which must be selected for our current domain. A meta-domain is constructed as follows. Each example (i.e., each domain) is characterized by the error rates of the landmarkers in \(Q_{\text{landmark}} \). The label or class of each example is the algorithm in \(Q_{\text{pool}} \) with best cross-validatory accuracy. A meta-learner can then associate the performance of the landmarkers with the best algorithm in \(Q_{\text{pool}} \). From this point of view, meta-learning is the process of finding areas of expertise of learners called landmarkers, and of correlating those areas with the performance of other -more advanced- learners (Bensusan and Giraud-Carrier, 2000; Pfahringer et. al, 2000).

4.4. Inductive Transfer and Learning to Learn

Learning is not an isolated task that starts from scratch every time a new problem domain appears. As experience accumulates, a learning mechanism is expected to perform increasingly better (Section 3). For learning to improve through time, knowledge about learning, or meta-knowledge, must be transferred across domains or tasks. The process is known as inductive transfer (Pratt and Thrun, 1997).

An interesting study in inductive transfer falls in the realm of neural networks. A review of how neural networks can learn from related tasks is provided by Pratt and Jennings (1998). Caruana (1997) shows why multitask learning works well in the context of neural networks using backpropagation. The claim is that training with many domains in parallel on a single neural network induces information that accumulates in the training signals; a new domain can then benefit from such past experience. Thrun and Sullivan (1998) propose a learning algorithm
where domains are clustered when mutually related. A new domain is assigned to the most related cluster; inductive transfer takes place when generalization exploits information about the selected cluster. Multitask learning can also be used in other learning paradigms such as kernel regression and decision trees.

An introduction to the benefits of learning from multiple tasks to improve generalization is provided by Thrun and Pratt (1998). The authors propose a general framework that shows the distinction between learning at the base-level and at the meta-level. In the base-level one simply tries to find the correct hypothesis \(h \) on a fixed hypothesis space \(\mathcal{H}_L \). In the meta-level one needs to find properties of target functions to characterize entire hypothesis spaces \(\{ \mathcal{H} \} \). It must be clear that both levels require some form of bias, i.e., no-free lunch theorems (Schaffer, 1994; Watanabe, 1985; Wolpert, 1996; Rao et al., 1995) apply at both levels.

4.4.1. Learning to Learn

Learning-to-learn relies on the main assumption that learning is simplified when it continues working in a life-long context (Thrun, 1998). The assumption is supported by the existence of patterns on each domain, and across domains. The general understanding of the nature of patterns across domains is that of invariant transformations. For example, image recognition of a target object is simplified if the object is invariant under rotation, translation, scaling, etc. Hence, learning-to-learn studies how to improve learning by detecting, extracting, and exploiting invariant transformation across domains. As an example, Thrun and Mitchell (1995) describe how to search for certain forms of invariance in life-long learning using a neural network. These kinds of invariance are used to bias the learner as it selects a hypothesis on a new domain.

4.4.2. Theoretical Studies

A theoretical analysis of the learning-to-learn paradigm is found within an empirical and Bayesian view (Baxter, 1998), and within a Probably Approximately Correct (Valiant, 1984) or PAC view. We focus on the PAC view (Baxter, 2000). In this case, the learner is assumed embedded in an environment of related learning domains. Meta-learning takes place because the learner is not only looking for the right hypothesis \(h \) in a hypothesis space \(\mathcal{H}_L \), but in addition is searching for the right hypothesis space in a family of hypothesis spaces \(\{ \mathcal{H} \} \). The right hypothesis space \(\mathcal{H}_L \subset \{ \mathcal{H} \} \) must be large enough to embed a solution to the problem domain, but small enough to make any form of generalization possible. The study draws an analogy between the role
of the VC dimension (Blumer et. al, 1989) and the size of the family of hypothesis spaces $|\mathcal{H}|$. It turns out both measures can be used to derive bounds on the number of domains, and the number of examples on each domain, required to ensure with high probability that we will find a solution having low error on new training domains. Hence, under certain assumptions, the number of examples required for each domain decreases as the number of observed domains increases.

4.5. Learning Classifier Systems

Learning classifier systems originated from the pioneer work of Holland (Holland, 1992; Holland and Reitman, 1978). An excellent review of the subject is given by Lanzl et. al (2000). A classifier system is a parallel, message-passing, rule-based system. Each message or rule—referred in this context as a classifier—is a condition-action pair; if a message matches the condition part, the rule is candidate to activate and execute the action part. The system assumes an input interface or set of detectors that translates signals from an external environment into messages. Similarly an output interface translates messages through effectors into external actions (Booker et. al, 1989).

A classifier system is a learning mechanism working at two different levels. At the first level, the system learns to identify rules that can return high profit from the environment. The problem of how to assign credit to the right rules, also known as the credit-assignment problem, is solved through some form of reinforcement learning (Sutton and Barto, 1998), e.g., bucket-brigade, profit-sharing plan, Q-learning. The mechanism assigns a credit or value of strength to each rule based on its contribution. At the second level, the system learns how to construct new rules that have the potential of further increasing the reward from the environment. Normally a set of genetic operators come into play for evolving the rule set. Rules with high strength have a higher probability of being selected to produce new offspring rules (Holland et. al, 2000).

Classifier systems may appear at first glance disconnected from meta-learning. A closer examination, however, reveals the opposite. For example, a learning algorithm can be dissected into a set of components (Vilalta, 1998), each with a specific function during classification, e.g., select the most relevant features, partition the training set following a separate-and-conquer approach or a divide-and-conquer approach, hypothesis pruning, etc. For each domain, activating some components may give a higher reward (e.g., higher predictive accuracy) than others. The framework adopted by learning classifier systems can be used in meta-learning by mapping classifiers or rules with learning components. A form of reinforcement learning can decide what learning strategy,
i.e., combination of learning components, maximizes the learner’s performance. In addition, a discovery system may also try to find new components that can produce more efficient learning algorithms. The idea above sheds light on a research direction to build self-adaptive learners (Figure 2), where the assessment of a hypothesis is based on the successful performance of a combination of learning components, and on a meta-learner using that meta-knowledge to build new learning algorithms.

4.6. OTHER APPROACHES

Outside the scope of classification, meta-learning has been applied to areas like case-based reasoning, constraint satisfaction, learning agents, etc. We end our survey by briefly mentioning some work related to these areas.

In the context of case-based reasoning, Goel (1996) describes a case-based interactive system for problem solving. The system displays the ability to reason about its own performance by keeping track of how a problem is solved, i.e., by keeping track of meta-cases. As a result, the system is able to provide explanations of its reasoning and justifications of its solutions.

Meta-learning has been used in analytic learning for constraint-satisfaction problems (Minton, 1993). Analytic learning (e.g., explanation based learning, derivational analogy), exploits problem-solving experience (Minton, 1989). When applied at a meta-learning level, the idea is to use meta-level theories to help the system reason about the problem solver’s base-level theory. A meta-level analysis is appropriate when the base-level theory is intractable (Minton, 1993).

Meta-learning can also be applied to areas like learning agents. Baum (1998) provides an extensive study and discussion on how to make agents collaborate (using a kind of reinforcement learning). The system embeds learning agents that can generate other agents. Other approaches include the use of meta-level information of problem-solving knowledge for cooperation in a multi-agent system (Prasad and Lesser, 1997).

5. Discussion and Conclusions

Our survey shows how the term meta-learning has been ascribed different meanings by different research groups. From building meta-learners of base classifiers (Section 4.1), to looking for dynamic forms of bias (Section 4.1), to studying how learning can continue in a life-long environment (Section 4.1), meta-learning continues to enrich the field of
machine learning with a constant question: how can we exploit knowledge about learning (i.e., meta-knowledge) to improve the performance of learning algorithms? In spite of the many research directions, no clear answer has emerged.

Perhaps broadening our view of the scope of meta-learning can provide better insights on how meta-knowledge can be used. For example, the approach adopted by stacked generalization (Section 4.1) assumes no fundamental distinction between learning at the base-level and at the meta-level. Transforming the training set by including the predictions of base learners is a form of re-using our learning tools at different levels of abstraction. The idea of making no fundamental differences between learning and meta-learning is shared by several researchers (Schmidhuber, 1995).

But meta-learning may be radically different from learning at the base level. For example, we could define meta-learning as the problem of taking the right action (i.e., the right bias) according to a specific world state (e.g., the type of input-output distribution). This definition allows us to equate meta-learning with some form of reinforcement learning (Ring, 1998). The definition also points to the mechanism behind learning classifier systems (Section 4.5).

Whether we consider meta-learning to have the same fundamental structure as base-learning or not, an important goal in machine learning is to combine the ability of a learning algorithm to improve performance when the number of examples increases, with the ability of the same learning algorithm to improve its learning bias when the number of tasks increases. To achieve this goal, we believe the field of meta-learning would benefit greatly from a study of how learning algorithms can improve their performance through experience, i.e., through meta-knowledge (Section 3).

Acknowledgements

This work was supported by IBM T.J. Watson Research Center.

References

A Survey of Meta-Learning

