Worst Case Response Time for Real-Time Software Transactional Memory

Yuanfeng Wen
Dept. of Computer Science
University of Houston
TX77004, USA
wyf@cs.uh.edu

Albert M.K. Cheng
Dept. of Computer Science
University of Houston
TX77004, USA
cheng@cs.uh.edu

Chaitanya Belwal
Dept. of Computer Science
University of Houston
TX77004, USA
cbelwal@cs.uh.edu

ABSTRACT
Software transactional memory (STM) is used to control access to shared resources. The worst case response time (WCRT) estimation is different from the classical preemptive or nonpreemptive model due to its abort-restart nature. In this paper, we derive a WCRT for a STM system using lazy conflict detection. A WCRT example is also given.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent Programming

General Terms
Algorithms, Performance

Keywords
Software transactional memory, WCRT

1. INTRODUCTION
Software transactional memory (STM) is used to control access to shared resources in memory. In [1], RTTM is proposed which implements an abstract model for transactions with bounded response time. There are two ways to detect a conflict, i.e., eager conflict detection (ECD) and lazy conflict detection (LCD) [2, 3]. ECD detects a conflict early on, while LCD detects that at the time of committing. LCD is easier to implement; therefore, it is often used. In [4], a necessary and sufficient scheduling condition for 2-task STM using LCD is proposed. This is also the first paper which formally derives a WCRT analysis on STM systems. However, there is a strong constraint in [4]. Due to the nondeterminism in release scenario in task sets having more than two tasks, the WCRT has not been studied before. Sufﬁcient scheduling conditions can also be obtained if WCRT is known.

In this paper, we first outline the limitation of the scheduling condition in [4] as a motivation in Section II. Section III proposes a general WCRT analysis for a task set of 2 tasks. WCRT for a task set of n tasks is discussed in Section IV. Section V gives a WCRT example for n-task set.

2. MOTIVATION
In [4], a sufficient schedulability condition for 2-task sets is proposed.

Theorem 1. [4] If a 2-task set $\Gamma_2 = \{T_1, T_2\}$ satisfies the necessary scheduling conditions, it is guaranteed to be schedulable when the total utilization factor U of this task set is at most 0.5. Or, the sufficient utilization bound of Γ_2 is $U \leq 0.5$.

The assumptions in this theorem are: 1) $T_1 \leq T_2 \leq 2 \cdot T_1$, 2) $U \leq 0.5$. Under these assumptions, we have the fact that each instance of T_1 can be preempted by at most once. That is why the WCRT of T_1 is $2 \cdot C_1 + C_2$ as described in Lemma 2 of [4].

However, when $T_1 > T_2$, Theorem 1 does not hold. Here is a counter-example. Let $C_1 = 4, T_1 = 18, C_2 = 1, T_2 = 6$ and tasks are released asynchronously, that is, T_1 is released at $t = 0$ and T_2 is released at $t = 1$. Then the first instance of T_1 will miss its deadline. This paper will determine the WCRT for this case.

The notations and formal definitions are as follows:
• a task set $\Gamma_n = \{T_1, T_2, ..., T_n\}$ is a set of n periodic tasks; Γ_n is also called a n-task set;
• the priority of $T_k \in \Gamma_n$ is the positive integer k, where a higher number implies higher priority;
• T_k is the arrival time between two successive jobs;
• C_k is the execution time;
• D_k is the relative deadline, in this paper, $D_k = T_k$;
• STM-LCD is the execution model of STM system which runs on a uniprocessor system and implements LCD.

3. WCRT FOR 2-TASK SET
In this section, we will first discuss the WCRT for a 2-task set.

Theorem 2. If tasks in a 2-task set $\Gamma_2 = \{T_1, T_2\}$ under STM-LCD are released asynchronously, a sufficient scheduling condition is:
1) $C_2 \leq T_2$;
2) $\left\lfloor \frac{T_2}{2} \right\rfloor (C_1 + C_2) + C_1 \leq T_1$. Or the worst case response time of T_1 is $\left\lfloor \frac{T_2}{2} \right\rfloor (C_1 + C_2) + C_1 \leq T_1$.

Proof. Obviously, T_2 is schedulable when $C_2 \leq T_2$.
Let T_2 be released at time h. To achieve the WCRT, the condition $0 < h \leq C_1 - 1$ should be according to Lemma2.
in [4]. Since there are $\lceil \frac{T_{n-1}}{T_2} \rceil$ instances of τ_2, the instance of τ_1 can be preempted by τ_2 at most $\lceil \frac{T_{n-1}}{T_2} \rceil$ times, then the WCRT of τ_1 will be $\lceil \frac{T_{n-1}}{T_2} \rceil |(C_1 + C_2) + C_1|$, which is a monotonically decreasing function of h. When $h = 1$, the WCRT of $\tau_1 = \lceil \frac{T_{n-1}}{T_2} \rceil |(C_1 + C_2) + C_1|$ is at a maximum. So as long as $\tau_1 = \lceil \frac{T_{n-1}}{T_2} \rceil |(C_1 + C_2) + C_1| \leq T_1$, τ_1 is schedulable.

Therefore, $\lceil \frac{T_{n-1}}{T_2} \rceil |(C_1 + C_2) + C_1| \leq T_1$ and $C_2 \leq T_2$ is the sufficient schedulability condition.

In the previous example, if let $T_1 = 19$, the task set is certainly schedulable, because:

- $C_2 \leq T_2$ holds;
- $\lceil \frac{T_{n-1}}{T_2} \rceil |(C_1 + C_2) + C_1| = \lceil \frac{19}{2} \rceil (4 + 1) + 4 = 19 \leq T_1$ holds;

Notice that, Theorem 2 is valid for asynchronous models, which requires the release offset of τ_2 cannot be 0. If tasks are released synchronously, the WCRT is $\lceil \frac{T_{n-1}}{T_2} \rceil |(C_1 + C_2)|$.

4. WCRT FOR N-TASK SET

Generally, we can calculate the WCRT for a n-task set, $\Gamma_n = \{\tau_1, \ldots, \tau_n\}$, $n \geq 2$, in this way.

Theorem 3. In a n-task, $\Gamma_n = \{\tau_1, \ldots, \tau_n\}$, $n \geq 2$, the WCRT of τ_i is: $C_i + \lceil \frac{T_{n-1}}{T_{i+1}} \rceil \cdot (C_i + C_{i+1}) + \lceil \frac{T_{n-1}}{T_{i+2}} \rceil \cdot (\max\{C_i, C_{i+1}\} + C_{i+2}) + \ldots + \lceil \frac{T_{n-1}}{T_{n-2}} \rceil \cdot (\max\{C_i, C_{i+1}, \ldots, C_{n-1}\} + C_n)$, where $i = 1, 2, 3, \ldots, n$; h_i is the release offset for τ_i.

Proof. In $[0, T_i]$, there are $\lceil \frac{T_{n-1}}{T_2} \rceil$ instances of τ_j, $j > i$. Since each instance of a higher priority task can induce abort costs to only a single instance of one lower priority task, to achieve the WCRT, each instance of τ_j should preempt a task instance with largest abort cost, or largest execution time, which is $\max\{C_i, C_{i+2}, \ldots, C_{j-1}\}$. Then to finish all instances of τ_j, the worst case execution time is $\lceil \frac{T_{n-1}}{T_2} \rceil \cdot (\max\{C_i, C_{i+2}, \ldots, C_{j-1}\} + C_j), j > i$. τ_i only needs C_i to execute itself, but it has to wait until tasks of higher priorities to finish. Summing them up proves the theorem.

5. N-TASK WCRT EXAMPLE

One question about this theorem is whether there is a n-task set that can achieve the WCRT. In fact, the n-task WCRT example can be constructed in a recursive way.

First, the two tasks with highest priority, τ_n and τ_{n-1} are constructed as following. Let $C_{n-1} = 5kT_2 = C_n + 8k$, $T_{n-1} = 2T_n$, T_n starts at t, and T_2 starts at $t + k$. The guidelines to design the example are: 1) for simplicity, T_{n-1} is a multiply of T_n; 2) if $T_{n-1} = pT_n$, τ_{n-1} should be preempted by τ_n for exactly p times; 3) there should be an idle interval left for lower priority tasks. As shown in the example in Figure 1, each instance of τ_{n-1} is preempted by instances of τ_n, and there is only an interval of length k idle.

Then τ_{n-1} and τ_n are considered as a single task τ'_{n-1}, with $T'_{n-1} = T_{n-1}$, and $C'_{n-1} = T_{n-1} - k$.

Using the same guideline, we construct τ_{n-2} according to τ'_{n-1}. In details, $C'_{n-2} = 5kT'_2 = C'_{n-1} + 8k', T'_{n-2} = 2T'_n, T'_n$ starts at t', T'_2 starts at $t' + k'$. Considering that $C'_{n-1} = T_{n-1} - k$, the relationship between k' and k is $k' = \frac{k}{2}$. Figure 1 also shows how to construct τ_{n-2} and τ'_{n-1}.

Similarly, we can construct $\tau_{n-3}, \ldots, \tau_2, \tau_1$. Notice that, in order to make sure that a higher priority task always preempts a lower priority task with the longest execution time or the largest penalty, we assume that $C_{n-1} \geq C_{n-2} \geq \ldots \geq C_1$.

Here is a specific example of $n = 3$. Let $k = 8, C_3 = 1$, then $T_3 = 65, C_2 = 5k = 40, T_2 = 2 \cdot T_3 = 130, C_1 = 5 \cdot k/8 = 5$. $T_1 = 260$.

The utilization of this 3-task set is only 34%, but the processor is busy almost at all the time.

6. CONCLUSIONS

In this paper, we derived a WCRT for the general n-task set running on a software transactional memory using lazy confliction detection. A WCRT example for n-task set is constructed in a recursive way.

7. ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation under Award Nos. 0720856 and 1219082.

8. REFERENCES

