Review

• Scalar field visualization
 – Describe scalar quantities (0D)
 – Methods: direct, geometric-based, feature-based

• Vector field visualization
 – Describe directional information (1D)
 – Methods: direct, geometric-based, texture-based, feature-based
$R^n \times R^m$ describes the domain of independent variables and the data values of dependent variables. Scientific data $\subseteq R^{n+m}$ includes 1D, 2D, 3D, and 3D + time as scalar, vector, and tensor, respectively.

Source: VIS, University of Stuttgart
One Simple Example of Tensor

Illustration of a symmetric second-order tensor as a deformation tensor. The tensor is uniquely determined by its action on all unit vectors, represented by the circle in the left image. The eigenvector directions are highlighted as black arrows.

In this example one eigenvalue (l2) is negative. As a consequence all vectors are mirrored at the axis spanned by eigenvector e1. The eigenvectors are the directions with strongest normal deformation but no directional change.
Tensor describes certain higher-order property of the space that scalar and vector-valued cannot
Definition

• A **second-order tensor** T is defined as a bilinear function from two copies of a vector space V into the space of real numbers

$$T: V \times V \rightarrow R$$

• Or: a second-order tensor T as linear operator that maps any vector $v \in V$ onto another vector $w \in V$

$$T: V \rightarrow V$$

• The definition of a tensor as a linear operator is prevalent in physics.
Definition

• Tensors are generally represented with respect to a specific Cartesian basis \(\{b_1, \ldots, b_n\} \) of the vector space \(V \).
• In this case, the tensor is uniquely defined by its components and is represented as a matrix.

• Considering definition (1), we have
 \[
 T(v, w) = w^T \cdot M \cdot v \quad \forall v, w \in V
 \]
 where \(v = v_1 b_1 + \cdots + v_n b_n \), \(w = w_1 b_1 + \cdots + w_n b_n \)

• For (2), we have \(T(v) = M \cdot v \)
Tensor As a Linear Operator

Illustration of a symmetric second-order tensor as linear operator or mapping or transformation.
Applications

• Tensors describe entities that scalars and vectors cannot describe sufficiently, for example, the stress at a point in a continuous medium under load.
 – medicine,
 – geology,
 – astrophysics,
 – continuum mechanics
 – and many more
Stress tensors describe internal forces or stresses that act within deformable bodies as reaction to external forces.

(a) External forces f are applied to a deformable body. Reacting forces are described by a three-dimensional stress tensor that is composed of three normal stresses s and three shear stresses τ.

(b) Given a surface normal n of some cutting plane, the stress tensor maps n to the traction vector t, which describes the internal forces that act on this plane (normal and shear stresses).
Tensors in Mechanical Engineering

- Strain tensor - related to the deformation of a body due to stress by the material’s constitutive behavior.

- Deformation gradient tensor – gradient of displacements of material points

- The strain tensor is a normalized measure based on the deformation gradient tensor

http://en.wikipedia.org/wiki/Finite_strain_theory
Diffusion Tensor Imaging (DTI)

- For medical applications, diffusion tensors describe the anisotropic diffusion behavior of water molecules in tissue.
- Here, the molecule motion is driven by the Brownian motion and not the concentration gradient.
- The tensor contains the following information about the diffusion: its strength depending on the direction and its anisotropy.
- It is positive semi-definite and symmetric.

Note that in practice the positive definiteness of diffusion tensors can be violated due to measurement noise.
Tensors in Medicine

- Diffusion tensors are not the only type of tensor that occur in the medical context.
- In the context of implant design, stress tensors result from simulations of an implant’s impact on the distribution of physiological stress inside a bone.
- An application related to strain tensors is used in elastography where MRI, CT or ultrasound is used to measure elastic properties of soft tissues. Changes in the elastic properties of tissues can be an important hint to cancer or other diseases.
Tensors in Geometry

- Curvature tensors - change of surface normal in any given direction
- Metric tensors - relates a direction to distances and angles; defines how angles and the lengths of vectors are measured independently of the chosen reference frame

\[
T(v, w) = w^T \cdot M \cdot v
\]
Gradient Tensor of Velocity Field

\[
\begin{bmatrix}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]
Tensors in Image Analysis

• Image analysis

• Computer vision

[Zhang et al, TVCG2007]
Some Math of Tensors
Definition (Recall)

• A second-order tensor T is defined as a bilinear function from two copies of a vector space V into the space of real numbers
 \[T: V \times V \to R \]

• Or: a second-order tensor T as linear operator that maps any vector $v \in V$ onto another vector $w \in V$
 \[T: V \to V \]

• The definition of a tensor as a linear operator is prevalent in physics.
Definition (Recall)

• Tensors are generally represented with respect to a specific Cartesian basis \(\{b_1, \ldots, b_n\} \) of the vector space \(V \).

• In this case, the tensor is uniquely defined by its components and is represented as a matrix.

• Considering definition (1), we have

\[
T(v, w) = w^T \cdot M \cdot v \quad \forall v, w \in V
\]

where \(v = v_1 b_1 + \cdots + v_n b_n \), \(w = w_1 b_1 + \cdots + w_n b_n \)

• For (2), we have \(T(v) = M \cdot v \)
Tensor Invariance

• **Tensors are independent of specific reference frames**, i.e. they are invariant under coordinate transformations.

• Invariance qualifies tensors to describe physical processes **independent of the coordinate system**. More precisely, the tensor components change according to the transformation into another basis; the characteristics of the tensor are **preserved**. Consequently, tensors can be analyzed using any convenient reference frame.

• **Rotational invariant**
Tensor Diagonalization

• The tensor representation becomes especially simple if it can be diagonalized.
• The complete transformation of T from an arbitrary basis into the eigenvector basis, is given by

$$UTU^T = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

• The diagonal elements $\lambda_1, \lambda_2, \lambda_3$ are the eigenvalues and U is the orthogonal matrix that is composed of the eigenvectors, that is (e_1, e_2, e_3)

• The diagonalization generally is computed numerically via singular value decomposition (SVD) or principal component analysis (PCA).
Tensor Properties

• **Symmetric Tensors.** A tensor S is called symmetric if it is invariant under permutations of its arguments
 \[S(v, w) = S(w, v) \quad \forall v, w \in V \]

• **Antisymmetric Tensors.** A tensor A is called antisymmetric or skew-symmetric if the sign flips when two adjacent arguments are exchanged
 \[A(v, w) = -A(w, v) \quad \forall v, w \in V \]

• **Traceless Tensors.** Tensors T with zero trace, i.e.
 \[tr(T) = \sum_{i=0}^{n-1} T_{ii}, \] are called traceless.
Tensor Properties

• **Positive (Semi-) Definite Tensors.** A tensor T is called positive (semi-) definite if

$$T(v, v) > (\geq) 0$$

Their eigenvalues and their determinant are greater than zero.

• **Negative (Semi-) Definite Tensors.** A tensor T is called negative (semi-) definite if

$$T(v, v) < (\leq) 0$$

their determinants are smaller than (smaller than or equal to) zero.

• **Indefinite Tensors.** Each tensor that is neither positive definite nor negative definite is indefinite.
Tensor Decompositions

- **Symmetric/Antisymmetric Part.** For non-symmetric tensors \(T \), the decomposition into a symmetric part \(S \) and an antisymmetric part \(A \) is a common practice:

\[
T = S + A
\]

where \(S = \frac{1}{2} (T + T^T) \), \(A = \frac{1}{2} (T - T^T) \)

- Physically, antisymmetric part contains rotational information and the symmetric part contains information about isotropic scaling and anisotropic shear
Tensor Decompositions

- **Stretch/Rotation.** Another useful decomposition of nonsymmetric, positive-definite tensors T (e.g. deformation gradient tensors) is the polar decomposition. It decomposes the transformation represented by T in a two-stage process: a rotation R and a right stretch U or a left stretch V

$$T = R \cdot U = V \cdot R$$

- A tensor is called stretch if it is symmetric and positive definite. A tensor is called rotation if it is orthogonal with determinant equal to one.
Tensor Decompositions

- **Shape/Orientation.** Via eigenanalysis symmetric tensors are separated into shape and orientation.
 - Here, shape refers to the eigenvalues and orientation to the eigenvectors.
 - Note that the orientation field is not a vector field due to the bidirectionality of eigenvectors.
Tensor Decompositions

• **Isotropic/Anisotropic Part.** Symmetric tensors can be decomposed into an isotropic T_{iso} and an anisotropic (deviatoric) part D

$$T = \frac{1}{3} tr(T)I + (T - T_{iso})$$

• From a physical point of view, the isotropic part represents a direction independent transformation (e.g., a uniform scaling or uniform pressure); the deviatoric part represents the distortion.
Asymmetric Tensor Decomposition

Jacobian

\[
\begin{bmatrix}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{bmatrix}
= \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
= \gamma_d \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \gamma_r \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} + \gamma_s \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}
\]

- Isotropic scaling: \(\gamma_d = \frac{a + d}{2} \)
- Rotation: \(\gamma_r = \frac{c - b}{2} \)
- Anisotropic stretching: \(\gamma_s = \frac{\sqrt{(a - d)^2 + (b + c)^2}}{2} \quad \theta = \tan^{-1}\left(\frac{b + c}{a - d}\right) \)
Second-order Tensor Fields

• In visualization, usually not only a single tensor but a whole tensor field is of interest.
• It can be considered as a function which assigns a tensor at any given position in space.

From now on, we consider only second order tensor which can be represented in the form of matrices.
What are the Features?

• **Scalar** related
 – Components
 – Determinant
 – Trace
 – Eigen-values

• **Vector** related
 – Eigen-vector fields
Tensor Interpolation

• Challenges
 – Natural representation of the original data.
 • This includes the preservation of central tensor properties (e.g., positive definiteness) and/or important scalar tensor invariants (e.g., the determinant).
 – Consistency.
 • consistent with the topology of the original data.
 – Invariance.
 • The resulting interpolation scheme needs to be invariant with respect to orthogonal changes of the reference frame.
 – Efficiency.
 • The challenge is to design an algorithm that represents a tradeoff between the above mentioned criteria and computational efficiency.
Comparison of component-wise tensor interpolation (a) and linear interpolation of eigenvectors and eigenvalues (b). Observing the tensors depicted by ellipses, the comparison reveals that the separate interpolation of direction and shape is much more shape-preserving (b).
Interpolations between two three-dimensional positive-definite tensors T_1 and T_2. The interpolation results are represented using superquadrics ((a)-(d)).

The plots (e) show the behavior of four tensor invariants for the respective interpolations: $\det(T), K_1 = \tr(T), K_2 = ||D||$ and $K_3 = \det(D/||D||)$, where D is the deviator of T and $||.||$ is the Frobenius norm. Image courtesy Kindlmann et al. 2007.
Challenges in Visualization

• Hard to achieve intuitive visualization
 – Tensors represent diverse quantities, ranging from the curvature of a surface to the diffusion of water molecules in tissue. There is no universal intuition similar to, e.g., arrows for vectors.

• Multi-variate nature makes it challenging.
 – The multi-variate nature of tensors affects all stages of the visualization pipeline, making each of them a challenging task, including interpolation, segmentation, and visualization.

• Perception issue: clutter and occlusion

• Highly application-dependent
Overview of the Visualization Techniques for Tensors
Direct Methods

- Color plots or DVR for scalar properties
- Line field visualization for vector valued properties for s.p.d. tensor fields
Direct Methods

- Glyph-based for the visualization of the local properties of tensor
 - Not really that direct!

- Challenges
 - Glyph design
 - Glyph packing
 - where and how many
Geometric-Based Methods

- Tensor lines and Hyper-streamlines
 - Integral curves of eigen-vector fields
Texture-based Method
Feature-based Method

- Topology or other invariants

[Auer and Hotz EuroVis11] [Zhang et al. TVCG 2007] [Zheng and Pang, Vis04]