Vector Field Analysis
Other Features
Topological Features

- Flow recurrence and their connectivity

- Separation structure that classifies the particle advection
Vector Field Gradient Recall

• Consider a vector field
 \[\frac{dx}{dt} = V(x) = \mathbf{f}(x, y, z) = \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} \]

• Its gradient is
 \[\nabla V = \begin{bmatrix} \frac{\partial f_x}{\partial x} & \frac{\partial f_x}{\partial y} & \frac{\partial f_x}{\partial z} \\ \frac{\partial f_y}{\partial x} & \frac{\partial f_y}{\partial y} & \frac{\partial f_y}{\partial z} \\ \frac{\partial f_z}{\partial x} & \frac{\partial f_z}{\partial y} & \frac{\partial f_z}{\partial z} \end{bmatrix} \]

It is also called the Jacobian matrix of the vector field. Many feature detection for flow data relies on Jacobian
Divergence and Curl

- **Divergence** - measures the magnitude of outward flux through a small volume around a point

\[
div V = \nabla \cdot V = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}
\]

\[
\nabla = \begin{bmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{bmatrix}
\]

- **Curl** - describes the infinitesimal rotation around a point

\[
curl V = \nabla \times V = \begin{bmatrix}
\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} & \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} & \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}
\end{bmatrix}
\]

\[
\nabla \cdot (\nabla \times V) = 0
\]

\[
\nabla \times (\nabla \phi) = 0
\]
Gauss Theorem

• Also known as divergence theorem, that relates the vectors on the boundary $\partial \mathcal{V} = \mathcal{A}$ of a region \mathcal{V} to the divergence in the region

$$
\int_{\mathcal{V}} \text{div } \mathbf{V} d\mathcal{V} = \int_{\mathcal{A}} \mathbf{V} \cdot \mathbf{n} d\mathcal{A}
$$

n being the outward normal of the boundary

• This leads to a physical interpretation of the divergence. Shrinking \mathcal{V} to a point in the theorem yields that the divergence at a point may be treated as the material generated at that point
Stoke Theorem

- The rotation of vector field V on a surface \mathcal{A} is related to its boundary $\partial \mathcal{A} = \mathcal{L}$. It says that the curl on \mathcal{A} equals the integrated field over \mathcal{L}.

$$\int_{\mathcal{A}} n \cdot \text{curl } V d\mathcal{A} = \oint_{\mathcal{L}} V \cdot dr$$

- This theorem is limited to two dimensional vector fields.
Another Useful Theorem about Curl

• In the book of Borisenko [BT79]
• Suppose $V = V' \times c$, an arbitrary but fixed vector, substituted into the divergence theorem. Using $\text{div}(V' \times c) = c \cdot \text{curl} V'$, one gets

$$\int_V \text{curl} V' \, dV = \int_{\mathcal{A}} n \times V' \, d\mathcal{A}$$

• Stoke’s theorem says that the flow around a region determines the curl.

• The second theorem says: Shrinking the volume V to a point, the curl vector indicates the axis and magnitude of the rotation of that point.
2D Vector Field Recall

• Assume a 2D vector field
 \[\frac{d\mathbf{x}}{dt} = V(x) = \mathbf{f}(x, y) = \begin{pmatrix} f_x \\ f_y \end{pmatrix} = \begin{pmatrix} ax + by + c \\ dx + ey + f \end{pmatrix} \]

• Its Jacobian is
 \[\nabla V = \begin{bmatrix} \frac{\partial f_x}{\partial x} & \frac{\partial f_x}{\partial y} \\ \frac{\partial f_y}{\partial x} & \frac{\partial f_y}{\partial y} \end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \]

• Divergence is \(a + e \)
• Curl is \(b - d \)

Given a vector field defined on a discrete mesh, it is important to compute the coefficients \(a, b, c, d, e, f \) for later analysis.
Examples of Divergence and Curve of 2D Vector Fields

Divergence and curl of a vector field
Potential or Irrotational Fields

• A vector field V is said to be a potential field if there exists a scalar field φ with

$$V = \nabla \varphi$$

φ is called the scalar potential of the vector field V

• A vector field V living on a simply connected region is irrotational, i.e. $\text{curl } V = 0$ (i.e. curl-free), if and only if it is a potential field.

• It is worth noting that the potential defining the potential field is not unique, because

$$\nabla (U + c) = \nabla U + \nabla c = \nabla U + 0 = \nabla U$$
Solenoidal Fields

• Or divergence-free field
 \[V = \text{curl} \Phi = \nabla \times \Phi \]

• Solenoidal fields stem from potentials too, but this time from vector potentials, \(\Phi \).

• These fields can describe incompressible fluid flow and are therefore as important as potential fields.

• A vector field \(V \) is solenoidal, i.e. \(V = \nabla \times \Phi \) with \(\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^m \), if and only if the divergence of \(V \) vanishes.

• The vector potential here is not unique as well
 \[\text{curl} (V + \nabla U) = \text{curl} V + \text{curl} \nabla U = \text{curl} V + 0 = \text{curl} V \]
Laplacian Fields

• A vector field V which is both potential and solenoidal (i.e. both curl-free and divergence-free), is called a Laplacian field.

• In a simply connected region, a Laplacian field is the gradient of a scalar potential which satisfies Laplace differential equation $\Delta \varphi = 0$.

• Scalar function like φ whose Laplacian vanishes, are called harmonic functions.
 – They are completely determined by their boundary values.
 – There exists one function satisfying Laplace’s equation for fixed boundary values.
Helmholtz Decomposition

\[V = \nabla \phi + \nabla \times \Phi \]

- Curl (or rotation) free
- Divergence free

Hodge decomposition

\[V = \nabla \phi + \nabla \times \Phi + \gamma \]

- Curl (or rotation) free
- Divergence free
- Harmonic
Helmholtz Decomposition Example

curl-free neither divergence-free
General Feature Classifications

• Points
 – Fixed points, vortex centers

• Lines
 – Features that occupy a set of points forming a line
 – 3D vortex cores, ridge lines, separation/attachment lines, cycles

• Surfaces
 – Features cover a set of points representing a surface
 – Shock wave, iso-surfaces, separation surfaces in 3D

• Volume
 – Features cover a non-zero region in 3D
 – Vortex region, 3D Morse sets, coherent structure
One important non-topological features in vector fields is vortex
Applications
Vortex Definition

• No rigorous and widely-accepted definition
• Capturing some swirling behavior

• Robinson 1991:
 – “A vortex exists when instantaneous *streamlines* mapped onto a plane normal to the vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference frame moving with the center of the vortex core”

• Requires a priori detection
• Not always Galilean invariant: varying by adding constant vector fields
Different Definitions

• A vortex?

• [lugt’72]
 – A vortex is the rotating motion of a multitude of material particles around a common center
 – Vorticity is sufficiently strong – not enough to detect
Different Definitions

• A vortex?
• [Robinson’91]
 – A vortex exists when its streamlines, mapped onto a plane normal to its core, exhibit a circular or spiral pattern, under an appropriate reference frame
Different Definitions

• A vortex?
• [Portela’97]
 – A vortex is comprised of a central core region surrounded by swirling streamlines
Vortex Structures

• Two main classes of vortex structures
 – Region based methods: isosurfaces of scalar fields
 – Line based methods: extract vortex core lines
Region Based

• Threshold on **pressure**:
 \[p \leq p_{\text{thresh}} \]

• Idea: centripetal force induces pressure gradient
 – Very easy to implement and compute
 – Purely local criterion

• Problems:
 – Arbitrary threshold
 – Pressure can vary greatly along a vortex
Region Based

• Threshold on **vorticity magnitude**:
 \[|\nabla \times V| \geq \omega_{thresh} \]

• Idea: strong infinitessimal rotation
 – Common in fluid dynamics community
 – Very easy to implement and compute, purely local

• Problems:
 – Arbitrary threshold
 – Vorticity often highest near boundaries
 – Vortices can have vanishing vorticity
Region Based

• Threshold on (normalized) helicity magnitude
 \[(\nabla \times \mathbf{V}) \cdot \mathbf{V} \geq h_{thresh}\]

• Idea: use vorticity but exclude shear flow
 – Still easy to implement and compute, purely local

• Problems:
 – Arbitrary threshold
 – Fails for curved shear layers
 – Vortices can have vanishing vorticity
Region Based

- λ_2-criterion

$$S := \frac{1}{2} (J + J^T)$$

Shear contribution of J

$$\Omega := \frac{1}{2} (J - J^T)$$

Rotational contribution of J

- Define as the largest eigenvalues of $S^2 + \Omega^2$
- Vortical motion where $\lambda_2 < 0$
 - Precise threshold, nearly automatic
 - Very widely used in CFD
 - Susceptible to high shear
 - Insufficient separation of close vortices
Region Based

- Q-criterion (Jeong, Hussain 1995)
- Positive 2nd invariant of Jacobian
 \[Q = \frac{1}{2} (\|\Omega\|^2 - \|S\|^2) \]

- Idea: \(Q > 0 \) implies local pressure smaller than surrounding pressure. Condition can be derived from characteristic polynomial of the Jacobian.

 - Common in CFD community
 - Can be physically derived from kinematic vorticity (Obrist, 1995)
 - Need good quality derivatives, can be hard to compute
Line Based

• Separation lines starting from focus saddle critical points [Globus/Levit 92]
Line Based

• Banks-Singer (1994):

 Idea: Assume a point on a vortex core is known.
 – Then, take a step in vorticity direction (predictor).
 – Project the new location to the pressure minimum perpendicular to the vorticity (corrector).
 – Break if correction is too far from prediction
Line Based

• Banks-Singer, continued

• Results in core lines that are roughly vorticity lines and pressure valleys.

 – Algorithmically tricky
 – Seeding point set can be large (e.g. local pressure minima)
 – Requires additional logic to identify unique lines
Line Based

• [Sujudi, Haimes 95]

• In 3D, in areas of 2 imaginary eigenvalues of the Jacobian matrix: *the only real eigenvalue is parallel to V*

 - In practice, standard method in CFD, has proven successful in a number of applications
 - Criterion is local per cell and readily parallelized
 - Resulting line segments are disconnected (Jacobian is assumed piecewise linear)
 - Numerical derivative computation can cause noisy results
 - Has problems with curved vortex core lines (sought-for pattern is straight)
Line Based

• Eigenvector method [Sujudi and Haimes 95]

\[w(\mathbf{x}) = v(\mathbf{x}) - (v(\mathbf{x}) \cdot e(\mathbf{x}))e(\mathbf{x}) \]

\[w(\mathbf{x}) = 0 \]

Reduced velocity

Although a point \(\mathbf{x} \) on the core structure is surrounded by spiraling integral curves, the flow vector at \(\mathbf{x} \) itself is solely governed by the non-swirling part of the flow.
Line Based

• Sahner et al. 2005

• Idea: construct a special vector field that allows to model ridge/valley-lines as integral curves (“feature flow field”).

• Authors applied it to Q-criterion and λ_2–criterion.
 – Works well in practice
 – Feature flow field requires high-order partial derivatives that are difficult to compute in certain data sets
 – Seed point set required (usually minimal points)
Line Based

- Sahner et al., results
Line Based

- The parallel vector operator
 [Roth and Peikert98]

- Given: 3D vector field V
- The curvature vector of v is
 \[c = \frac{v \times a}{|v|^3} \]
 where $a = \frac{Dv}{Dt}$ is the acceleration of

 Let $b = \frac{D^2v}{Dt^2}$

- Vortex core line: all locations in the domain where b is parallel to v,

- Line structures
• Particular parallel vector approaches

<table>
<thead>
<tr>
<th>Authors</th>
<th>Type *</th>
<th>Description</th>
<th>Basic Formula</th>
<th>Additional Criteria</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sujudi, Haines</td>
<td>Z</td>
<td>zero curvature lines of velocity</td>
<td>$v \parallel (\nabla v) v$</td>
<td>complex eigenvalues</td>
<td>80</td>
</tr>
<tr>
<td>Miura, Kida</td>
<td>Z,E</td>
<td>valley lines of pressure</td>
<td>$v \parallel (\nabla v) v$</td>
<td>valley line (conditions on eigenvalues)</td>
<td>87</td>
</tr>
<tr>
<td>Strawn, Kenwright, Ahmad</td>
<td>E</td>
<td>maximum lines of vorticity</td>
<td>$w \parallel (\nabla w)^T w$</td>
<td>maximum line (conditions on eigenvalues)</td>
<td>79</td>
</tr>
<tr>
<td>Levy, Degani, Seginer</td>
<td></td>
<td>velocity parallel to vorticity</td>
<td>$v \parallel \nabla \times v$</td>
<td>rotation (non-zero vorticity)</td>
<td>74</td>
</tr>
<tr>
<td>Banks, Singer</td>
<td></td>
<td>vorticity parallel to gradient of pressure</td>
<td>$\nabla p \parallel \nabla \times v$</td>
<td>minimum of pressure (condition on eigenvalues)</td>
<td>77</td>
</tr>
</tbody>
</table>

From M. Roth’s PhD thesis
Extend to Unsteady Flow

• Path lines: cores of swirling particle motion

[Weinkauf et al., Vis 2007]
Acknowledgment

• Thanks material from
• Dr. Alexander Wiebel
• Dr. Holger Theisel
• Dr. Filip Sadlo