Sub-Topics

• Compute bounding box
• Compute Euler Characteristic
• Estimate surface curvature
• Line description for conveying surface shape
• Morse function and surface topology--Reeb graph
• Scalar field topology--Morse-Smale complex
Surface Curvature Estimation

By Prof. Eugene Zhang
Shape Visualization

• How to convey shape with a few lines? What lines should be drawn?
Shape Visualization

- Placing lines along the principle curvature direction is best at illustrating the shape of an object.
Curvature

• Curve
• Surface
Curvature of a Planar Curve
A Planar Curve

• Given a 2D curve \(r(t) = (x(t), y(t)) \)

 – The unit tangent vector is defined as
 \[
 T(t) = \frac{r'(t)}{|r'(t)|} = \frac{(x'(t) \quad y'(t))}{\sqrt{(x'(t))^2 + (y'(t))^2}}
 \]

 – The unit normal vector is
 – counterclockwise cross product
Arc Length

- The arc length of $r(t) = (x(t), y(t))$ is

$$s(u) = \int_{t=0}^{u} |r'(t)| dt = \int_{t=0}^{u} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

- and

$$s(t) = |r'(t)|$$
Arc Length Based Re-parameterization

- The curve $r(t) = (x(t), y(t))$ becomes $r(s) = (x(s), y(s))$
- and we have
 $$|r'(s)| = \frac{|r'(t)|}{s'(t)} = \frac{|r'(t)|}{|r'(t)|} = 1$$
Arc Length Based Re-parameterization
Arc Length Based Re-parameterization

- The unit tangent vector is

\[T(s) = \frac{r'(s)}{|r'(s)|} = r'(s) \]
Curvature

- The curvature is
 \[\kappa(s) = T'(s) \cdot N(s) \]
Signed Curvature
Topology of Curves
Topology of Curves

Gauss Circle
Topology of Curves

Gauss Circle
Topology of Curves

Gauss Circle
Topology of Curves
Topology of Curves

Gauss Circle
Conclusion

• Recall $\kappa(s)$ measures how fast unit tangent vectors change directions.
• Therefore, it also measures how fast unit normal vectors change directions, counting orientation.
• The total curvature along a closed curve is 2π.
• This shows that the total curvature of a curve is a topological quantity.
Curvature of a Surface
Surface Curvature

- Use curvature of curves to define curvature of a surface
- For a point \(P \) on the surface
 - For every unit tangent vector \(V \) at \(P \)
 - Construct the plane that contains \(P \) and is parallel to \(V \) and \(N \)
 - Find the intersection of the surface and this plane
 - Compute the curvature of the intersection curve (called normal curvature)
Surface Curvature

Surface Curvature

• Let \(t = aS_u + bS_v \) be a unit tangent vector

• The normal curvature in the direction \(t \) is:

\[
S_{tt} \cdot N = (a \quad b) \begin{pmatrix} S_{uu} \cdot N & S_{uv} \cdot N \\ S_{vu} \cdot N & S_{vv} \cdot N \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = (a \quad b) \begin{pmatrix} l & m \\ m & n \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}
\]
Tangent Space

- Classifying curves of a surface through a point p

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html
Tangent Space

- Two curves are equivalent if they are tangent to each other at p.

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html
Tangent Space

• All different equivalent classes of curves form a line space: tangent space.

Image credit: http://cache.eb.com/eb/image?id=70820&rendTypeId=4
Tangent Space

- Each element in the tangent space, a vector, represents a class of equivalent curves.

Image credit: http://cache.eb.com/eb/image?id=70820&rendTypeId=4
Tangent Space and Curvature

• All curves belonging to the same class have the same curvature at point p.

Image credit: www.peroxide.dk/.../tut10/pxdttut10.html
Tangent Space and Curvature

- Curvature depends only on the tangent vector.

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html
Tangent Space and Curvature

• A tangent vector can be represented by
\[t = aS_u + bS_v \]
where
\[S_u = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{pmatrix} \]
\[S_v = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{pmatrix} \]

• The curvature
\[\kappa(a, b) \]

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html
Curvature

• The curvature function is a quadratic function

\[\kappa(a, b) = la^2 + 2mab + nb^2 \]

\[= [a \ b] \begin{bmatrix} l & m \\ m & n \end{bmatrix} [a \ b] \]

• Where

\[l = S_{uu} \bullet N \quad m = S_{uv} \bullet N \quad n = S_{vv} \bullet N \]
Surface Curvature

\[\kappa(a, b) = la^2 + 2mab + nb^2 \]

\[= \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} l & m \\ m & n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \]

- The quadric form has a maximum \(\kappa_1 \) and a minimum \(\kappa_2 \), which are the eigenvalues of the matrix.
- The corresponding eigenvectors are principle curvature directions.
Discrete Principle Curvatures

- κ_1 and κ_2 satisfy $x^2 - 2Hx + K = 0$
- So $\kappa_{1,2} = H \pm \sqrt{H^2 - K}$

- Principle directions are found by finding the eigenvectors of the curvature tensor
Curvature Tensor

Isotropic
- $k_{\text{max}} > 0$
- $k_{\text{min}} > 0$

- *spherical*

Anisotropic
- $k_{\text{max}} > 0$
- $k_{\text{min}} > 0$

- *elliptic*

- $k_{\text{max}} > 0$
- $k_{\text{min}} = 0$

- *parabolic*

- $k_{\text{max}} > 0$
- $k_{\text{min}} < 0$

- *hyperbolic*

Image credit: Alliez et al.
Surface Curvature

• Some special numbers about the curvature tensor:
 – Normal curvature

\[\kappa_\theta = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta \]
Surface Curvature

- Some special numbers about the curvature tensor:
 - Mean curvature
 \[H = \frac{\kappa_1 + \kappa_2}{2} \]
 - Gaussian curvature
 \[K = \kappa_1 \kappa_2 \]
Curvature Tensor

Isotropic

- $k > 0$
 - spherical

- $k = 0$
 - planar

Anisotropic

- $k_{\text{max}} > 0$
 - elliptic

- $k_{\text{min}} > 0$

- $k_{\text{max}} < 0$

- $k_{\text{max}} > 0$
 - parabolic

- $k_{\text{min}} < 0$
 - hyperbolic

Image credit: Alliez et al.
How to Compute Curvature Tensor on a Mesh?

• Triangle:
 – Normal (well-defined, not continuous)
 – Curvature (zero inside a triangle)

• Vertex:
 – Normal (the average of the normal of the incident triangles)
 – Curvature
Local Frame

- Triangle

\[Y = N \times X \]

\[X = \frac{v_1 - v_0}{|v_1 - v_0|} \]
Local Frame

• Vertex
 – Find a 3D vector w

$$X = N \times w$$
$$Y = N \times X$$
 – How do you find w?
 • Anyway is fine so long
 w is not co-linear with N
Discrete Gaussian Curvature

- Discrete Gaussian curvature for a vertex:
 \[K(v) = 2\pi - \sum_{t \in \sigma(v)} \alpha(t_v) \]
Discrete Gaussian Curvature

- But now the Gaussian curvature is not smooth.
- Treat the curvature at a vertex as a spatial average of its surrounding space

\[
K(v) = \frac{2\pi - \sum_{t \in \sigma(v)} \alpha(t_v)}{\text{Area}(v)}
\]
Voronoi Area Computation

- Non-obtuse ($<\pi/2$)

\[
A_{\text{Voronoi}} = \frac{1}{8}(|PR|^2 \cot \theta_1 + |PQ|^2 \cot \theta_2)
\]
Voronoi Area Computation

- Obtuse ($>\pi/2$)
 - Voronoi region is outside of the triangle
The algorithm for Voronoi Area Computation

\[A_{\text{Mixed}} = 0 \]

For each triangle \(T \) from the 1-ring neighborhood of \(x \)

If \(T \) is non-obtuse,
 // Voronoi safe
 // Add Voronoi formula (see Section 3.3)
 \[A_{\text{Mixed}} + = \text{Voronoi region of } x \text{ in } T \]

Else
 // Voronoi inappropriate
 // Add either \(\text{area}(T)/4 \) or \(\text{area}(T)/2 \)

If the angle of \(T \) at \(x \) is obtuse

\[A_{\text{Mixed}} + = \text{area}(T)/2 \]

Else

\[A_{\text{Mixed}} + = \text{area}(T)/4 \]
Discrete Mean Curvature

• Discrete mean curvature:

\[
2H(u)N_u = \frac{\sum_{v\in\sigma(u)} \beta(u_v)}{\text{Area}(u)}
\]

• where

\[
\beta(u_v) = \frac{(\cot \theta_1 + \cot \theta_2)}{2} (u - v)
\]
Normal Curvature Along an Edge

• Discrete normal curvature for a vertex u along an edge (u, v) is:

$$
\kappa_{u,v}^N = \frac{2(u - v) \cdot N_u}{\|u - v\|^2}
$$
Mean Curvature and Normal Curvatures

- Discrete mean curvature at a vertex v is the weighted sum of the normal curvatures for edges incident to v:

$$H(u) = \frac{1}{2} \left((2H(u)N_u) \cdot N_u \right) = \frac{\sum_{v \in \sigma(u)} \beta(u_v) \cdot N_u}{2 \text{Area}(u)}$$

$$\beta(u_v) \cdot N_u = \frac{(\cot \theta_1 + \cot \theta_2)}{2} (u - v) \cdot N_u$$

$$= \frac{2}{2} \left(\frac{\cot \theta_1 + \cot \theta_2}{2} \right) \frac{\|u - v\|^2}{\|u - v\|^2} (u - v) \cdot N_u$$

$$= \frac{(\cot \theta_1 + \cot \theta_2)\|u - v\|^2}{4} \frac{2(u - v) \cdot N_u}{\|u - v\|^2}$$

$$= \frac{(\cot \theta_1 + \cot \theta_2)\|u - v\|^2}{4} K_{u,v}^N$$
Discrete Curvature Tensor

• We know that:
 \[\kappa(a, b) = la^2 + 2mab + nb^2 \]

• Need to compute \(l, m, \) and \(n. \)

• For each edge \((u, v)\), we also know \(\kappa_{u,v} \)

• Now we have a set of equations based on each edge:
 \[\kappa_i = \kappa_{(a_i, b_i)} = la_i^2 + 2ma_i b_i + nb_i^2 \]
Discrete Curvature Tensor

• Solve the following system of linear equations:

\[\kappa_i = \kappa_{(a_i, b_i)} = l a_i^2 + 2 m a_i b_i + n b_i^2 \]

• or equivalently

\[\begin{pmatrix} a_1^2 & 2a_1 b_1 & b_1^2 \\ a_2^2 & 2a_2 b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_n b_n & b_n^2 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix} \]
Discrete Curvature Tensor

- Solve the following system of linear equations:
 \[\kappa_i = \kappa_{(a_i,b_i)} = la_i^2 + 2ma_i b_i + nb_i^2 \]
- or equivalently
 \[
 \begin{pmatrix}
 a_1^2 & 2a_1b_1 & b_1^2 \\
 a_2^2 & 2a_2b_1 & b_2^2 \\
 \vdots & \vdots & \vdots \\
 a_n^2 & 2a_nb_n & b_n^2
 \end{pmatrix}
 \begin{pmatrix}
 l \\
 m \\
 n
 \end{pmatrix}
 =
 \begin{pmatrix}
 \kappa_1 \\
 \kappa_2 \\
 \vdots \\
 \kappa_n
 \end{pmatrix}
 \]
- The a’s and b’s are the 2D coordinates of tangent vectors.
Discrete Curvature Tensor

- How to solve it efficiently?

\[
\begin{pmatrix}
a_1^2 & 2a_1b_1 & b_1^2 \\
a_2^2 & 2a_2b_1 & b_2^2 \\
\vdots & \vdots & \vdots \\
a_n^2 & 2a_nb_n & b_n^2 \\
\end{pmatrix}
\begin{pmatrix}
l \\
m \\
n \\
\end{pmatrix}
=
\begin{pmatrix}
\kappa_1 \\
\kappa_2 \\
\vdots \\
\kappa_n \\
\end{pmatrix}
\]
Discrete Curvature Tensor

• How to solve it efficiently?

\[
\begin{pmatrix}
 a_1^2 & 2a_1b_1 & b_1^2 \\
 a_2^2 & 2a_1b_1 & b_2^2 \\
 \vdots & \vdots & \vdots \\
 a_n^2 & 2a_nb_n & b_n^2
\end{pmatrix}
\begin{pmatrix}
 l \\
 m \\
 n
\end{pmatrix} =
\begin{pmatrix}
 \kappa_1 \\
 \kappa_2 \\
 \vdots \\
 \kappa_n
\end{pmatrix}
\]

• Least-square fitting (SVD)
Discrete Curvature Tensor

- How to solve it efficiently?

\[
\begin{pmatrix}
 a_1^2 & 2a_1b_1 & b_1^2 \\
 a_2^2 & 2a_1b_1 & b_2^2 \\
 \vdots & \vdots & \vdots \\
 a_n^2 & 2a_n b_n & b_n^2
\end{pmatrix}
\begin{pmatrix}
 l \\
 m \\
 n
\end{pmatrix}
=
\begin{pmatrix}
 \kappa_1 \\
 \kappa_2 \\
 \vdots \\
 \kappa_n
\end{pmatrix}
\]

- Another way:

\[
\begin{pmatrix}
 a_1^2 & 2a_1b_1 & b_1^2 \\
 a_2^2 & 2a_1b_1 & b_2^2 \\
 \vdots & \vdots & \vdots \\
 a_n^2 & 2a_n b_n & b_n^2
\end{pmatrix}^T
\begin{pmatrix}
 a_1^2 & 2a_1b_1 & b_1^2 \\
 a_2^2 & 2a_1b_1 & b_2^2 \\
 \vdots & \vdots & \vdots \\
 a_n^2 & 2a_n b_n & b_n^2
\end{pmatrix}
\begin{pmatrix}
 l \\
 m \\
 n
\end{pmatrix}
=
\begin{pmatrix}
 a_1^2 & 2a_1b_1 & b_1^2 \\
 a_2^2 & 2a_1b_1 & b_2^2 \\
 \vdots & \vdots & \vdots \\
 a_n^2 & 2a_n b_n & b_n^2
\end{pmatrix}^T
\begin{pmatrix}
 \kappa_1 \\
 \kappa_2 \\
 \vdots \\
 \kappa_n
\end{pmatrix}
\]
What Next?

• Put l, m, n into a 2x2 matrix and solve for eigenvalues (principal curvatures) and eigenvectors (principal directions)
Examples

mean Gaussian minimum maximum

Image credit: Mark Meyer et al.
Examples

Image credit: Alleiz et al.
Hatch Drawing

Praun et al.
A Comparison

Hertzmann and Zorin
Tracing Streamlines
Tracing Streamlines
Corner Tables

• What is a corner?
• Why is it useful?
 – Angles
 – Other corner-related properties
Corner Tables

• Operations
 - .p, .n, .o
 - .v
 - .e
 - .t
 - Can cascade:
 - What is c.o.t, c.o.p, c.o.n?
 - c.o.p = c.p.o?
 - c.o = NULL?
Corner Tables

- Go around a vertex
- Where is c.p.o.n?
- Where is c.p.o.p?
- Where is (c.p.o.p).p.o.p?
Constructing Corner Tables

• Index

• .o, .p, .n, .v, .e, .t

```cpp
class Corner{
public:
    unsigned char Edge_count;  // special variable for edges search 1/21/05
    int index;
    int v;  // the ID of the vertex of the corner
    int n;  // the next corner according to the orientation
    int p;  // the previous corner according to the orientation
    int t;  // the triangle the corner belongs to
    int ot;  // the index of its opposite triangle for traversal
    int o;  // the index of its opposite corner
    Edge *e;  // the opposite edge of the corner
    float angle;  // the angle of the corner
    float BeginAng, EndAng;  // for correct angle allocation of the corner around vertex v
    float r;
    bool orient;

    //******************************************************************************
    /* Optional variables */
    Edge *edge[2];  // two edges associated with this corner

    Corner();
    { e = NULL; 
      edge[0] = edge[1] = NULL; 
    }

double get_Angle();
```
Constructing Corner Tables

- Read in all vertices and triangles
- Set \(\text{num_corners} = 3 \times \text{num_tris} \)
- For \(i=0 \) to \(\text{num_tris} \)
 - \(T = \text{tlist}[i] \)
 - \(T \) has three corners
 - \(c0 = \text{clist}[3 \times i] \)
 - \(c1 = \text{clist}[3 \times i + 1] \)
 - \(c2 = \text{clist}[3 \times i + 2] \)
 - Such that \(c_i.v = T.\text{verts}[i] \)
Constructing Corner Tables

• Construct the following table:
 – corner index, min(c.p.v.index, c.n.v.index),
 max(c.p.v.index, c.n.v.index)
Constructing This Table

<table>
<thead>
<tr>
<th>c.index</th>
<th>Min(c.p.v.index, c.n.v.index)</th>
<th>Max(c.p.v.index, c.n.v.index)</th>
<th>c.o.index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[t_0 = (v_2, v_0, v_1) \]
\[t_1 = (v_1, v_0, v_3) \]
Sort According to Min/Max

<table>
<thead>
<tr>
<th>c.index</th>
<th>Min(c.p.v.index, c.n.v.index)</th>
<th>Max(c.p.v.index, c.n.v.index)</th>
<th>c.o.index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

\[t_0 = (v2, v0, v1)\]
\[t_1 = (v1, v0, v3)\]
Look for Pairs and Set Up Links

<table>
<thead>
<tr>
<th>c.index</th>
<th>Min(c.p.v.index, c.n.v.index)</th>
<th>Max(c.p.v.index, c.n.v.index)</th>
<th>c.o.index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>NULL</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>NULL</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>NULL</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>NULL</td>
</tr>
</tbody>
</table>

\[t0=(v2, v0, v1) \]
\[t1=(v1, v0, v3) \]