Numerical differentiation - forward difference formula

- From the definition of derivatives
 \[f''(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

 one can derive an approximation for the 1st derivative
 \[f'(x) \approx \frac{f(x + h) - f(x)}{h} \]

- The same formula can be obtained from the Taylor series, e.g.
 \[f(x + h) = f(x) + hf'(x) + \frac{h^2}{2} f''(\xi) \]
 \[f'(x) = \frac{f(x + h) - hf(x)}{h} - \frac{h}{2} f''(\xi) \]
Center Difference Formula

- A better formula is derived if looking at the following two terms
 \[f(x + h) = f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{3!} f'''(\xi_1) \]
 \[f(x - h) = f(x) - hf'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{3!} f'''(\xi_2) \]

- Subtracting equation (2:2) from (2:1) leads to
 \[f'(x) = \frac{1}{2h} [f(x + h) - f(x - h)] - \frac{h^2}{12} [...] \]
 - \(h \) is quadratic in the error term

Center Difference Formula for 2nd Derivatives

- Extend (2:1) and (2:2) by an additional term
 \[f(x + h) = f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{3!} f'''(x) + \frac{h^4}{4!} f^{(4)}(\xi_1) \]
 \[f(x - h) = f(x) - hf'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{3!} f'''(x) + \frac{h^4}{4!} f^{(4)}(\xi_2) \]

- Adding both equations leads to
 \[f''(x) = \frac{1}{h^2} [f(x + h) - 2f(x) + f(x - h)] - \frac{h^4}{12} [...] \]
Numerical differentiation - summary

- **Forward difference formula:**
 \[f'(x) = \frac{f(x + h) - f(x)}{h} \]

- **Center difference formula for the 1st derivative:**
 \[f'(x) = \frac{1}{2h} [f(x + h) - f(x - h)] \]

- **Center difference formula for the 2nd derivative:**
 \[f''(x) = \frac{1}{h^2} [f(x + 2h) - 2f(x) + f(x - 2h)] \]

Differential equations - terminology

- **Differential equations:** equations containing the derivative of a function as a variable
 - An *ordinary differential equation* (ODE) only contains functions of one independent variable
 - A *partial differential equation* (PDE) contains functions of multiple independent variables and their partial derivatives
- **The order** of a differential equation is that of the highest derivative that it contains
- The goal is to find a function \(y(t) \) whose derivatives fulfill the given differential equations, e.g.
 \[y^{(n)} (t) = f(t, y, y', y'', ..., y^{(n-1)}) \]
Finite Differences Approach for Solving Differential Equations

- If the analytic solution of the DE can not be determined, calculate an approximate solution in discrete locations

- Replace the derivatives in the DE by an according approximation formula

\[
\frac{d^2}{dx^2} + 2 \frac{dy}{dx} + 10x = 0 \quad 0 \leq x \leq 1
\]

\[
y(0) = 1 \quad y(1) = 2
\]

Example (I)

- Solve the following two point boundary value problem using the finite difference method

\[
\frac{dy}{dx} + 10x = 0 \quad 0 \leq x \leq 1
\]

- For simplicity, let's assume the points of interest are equally spaced

\[
x_i = a + ih \quad 0 \leq i \leq n + 1 \quad h = \frac{b-a}{n+1}
\]

- e.g. for \(h = 0.2 \), the mesh points are

\[
x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1.0
\]

- Due to the boundary values: \(y_0 = y(x_0) = 1 \quad y_5 = y(x_5) = 2 \)

- \(y_1 \) - \(y_4 \) are unknown
Example (II)

- Discrete version of the ODE using central differences:
 \[
 \frac{1}{h^2}(y_{i+1} - 2y_i + y_{i-1}) + 2 \frac{1}{2h}(y_{i+1} - y_{i-1}) + 10x_i = 0
 \]
 \[
 \frac{1}{0.2^2}(y_{i+1} - 2y_i + y_{i-1}) + 2 \frac{1}{0.4}(y_{i+1} - y_{i-1}) + 10x_i = 0
 \]
 \[
 25(y_{i+1} - 2y_i + y_{i-1}) + 5(y_{i+1} - y_{i-1}) + 10x_i = 0
 \]
 \[
 20y_{i+1} - 50y_i + 30y_{i-1} = -10x_i
 \]

Example (III)

\[
i = 1: \quad 20y_0 - 50y_1 + 30y_2 = -10x_1 \quad \rightarrow \quad 20 - 50y_1 + 30y_2 = -10 \cdot 0.2
\]

\[
i = 1: \quad -50y_1 + 30y_2 = -22
\]

\[
i = 2: \quad 20y_1 - 50y_2 + 30y_3 = -4
\]

\[
i = 3: \quad 20y_2 - 50y_3 + 30y_4 = -6
\]

\[
i = 4: \quad 20y_3 - 50y_4 = -68
\]

Or

\[
\begin{bmatrix}
-50 & 30 \\
20 & -50 & 30 \\
20 & -50 & 30 \\
20 & -50 & 30 \\
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
\end{bmatrix}
= \begin{bmatrix}
-22 \\
-4 \\
-6 \\
-68 \\
\end{bmatrix}
\]

A \quad y \quad b
Solving $Ay = b$ using an iterative solver

Given A, b and an initial guess y_0

$r_0^0 = b - Ay_0$

Given \hat{r} such that $\hat{r}_0^T r_0^0 \neq 0$

$\rho_0 = \alpha = \omega_0 = 1$

$v_0 = P_0 = 0$

for $i = 1, 2, ...$

$$
\begin{align*}
\rho_i &= \hat{r}_0^T r_{i-1} \\
\beta &= \frac{\rho_i}{\rho_{i-1}} \\
p_i &= r_{i-1} + \beta(p_{i-1} - \omega_{i-1} v_{i-1}) \\
v_i &= Ap_i \\
\alpha &= \frac{\rho_i}{r_i^T v_i} \\
s_i &= r_{i-1} - \omega v_i \\
t &= As_i \\
\omega &= (t^T s)^T \\
y_i &= y_{i-1} + \omega s + \alpha t \\
r_i &= s - \omega t
\end{align*}
$$

Matrix-vector multiplication
Scalar product

Scalar product in parallel

- Scalar product:

$$s = \sum_{i=0}^{N-1} a[i] \cdot b[i]$$

- Parallel algorithm

$$s = \sum_{i=0}^{N/2-1} (a[i] \cdot b[i]) + \sum_{i=N/2}^{N-1} (a[i] \cdot b[i])$$

$$= \sum_{i=0}^{N/2-1} (a_{\text{local}}[i] \cdot b_{\text{local}}[i]) + \sum_{i=0}^{N/2-1} (a_{\text{local}}[i] \cdot b_{\text{local}}[i])$$

- requires communication between the processes
Matrix-vector product in parallel

\[
\begin{bmatrix}
-50 & 30 \\
20 & -50 & 30 \\
20 & -50 & 30 \\
20 & -50 & 30 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix}
=
\begin{bmatrix}
rhs_1 \\
rhs_2 \\
rhs_3 \\
rhs_4 \\
\end{bmatrix}
\]

Process 0
Process 1

\(-50x_1 + 30x_2 \\
20x_1 - 50x_2 + 30x_3 \\
20x_2 - 50x_3 + 30x_4 \\
20x_3 - 50x_4 = rhs_1 \\
\]
\(-50x_1 + 30x_2 \\
20x_1 - 50x_2 + 30x_3 \\
20x_2 - 50x_3 + 30x_4 = rhs_2 \\
20x_3 - 50x_4 = rhs_3 \\
20x_3 - 50x_4 = rhs_4 \\
\]

Process 0 needs \(x_3\)
Process 1 needs \(x_2\)

Matrix vector product in parallel (II)

- Introduction of ghost cells

<table>
<thead>
<tr>
<th>Process zero</th>
<th>Process one</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>(x_4)</td>
</tr>
</tbody>
</table>

- Looking at the source code, e.g. ...

\[p_i = r_{i-1} + \beta (p_{i-1} - \omega_{i-1}v_{i-1})\]
\[v_i = Ap_i\]

- ...since the vector used in the matrix vector multiplication changes every iteration, you always have to update the ghost cells before doing the calculation
Matrix vector product in parallel (III)

- so the parallel algorithm for the same area is:

\[p_i = r_{i-1} + \beta(p_{i-1} - \omega_{i-1}v_{i-1}) \]

Update the ghost-cells of \(p \), e.g.
- Process 0 sends \(p(2) \) to Process 1
- Process 1 sends \(p(3) \) to Process 0

\(v_i = Ap_i \)

2D Example - Laplace equation (I)

- 2-D Laplace equation

\[\frac{\partial^2}{\partial x^2} u(x, y) + \frac{\partial^2}{\partial y^2} u(x, y) = 0 \]

- Central discretization leads to

\[
\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} = 0
\]

\[
\begin{array}{cccc}
 \ast & \ast & i,j-1 & \ast \\
 \ast & i,j & i,j & \ast \\
 \ast & \ast & \ast & \ast \\
 \ast & \ast & \ast & \ast \\
\end{array}
\]
2-D Example: Laplace equation (II)

- Parallel domain decomposition
 - Data exchange at process boundaries required
- Halo cells / Ghost cells
 - Copy of the last row/column of data from the neighbor process

Example - 2-D Laplace equation (IV)

- Process mapping and determining neighbor processes
 \[\begin{align*}
 np_x & : \text{no of procs in } x \text{ direction} \\
 np_y & : \text{no of procs in } y \text{ direction} \\
 n_{\text{left}} & = \text{rank} - 1 \\
 n_{\text{right}} & = \text{rank} + 1 \\
 n_{\text{up}} & = \text{rank} + np_x \\
 n_{\text{down}} & = \text{rank} - np_x
 \end{align*} \]

- At boundaries: set the rank of the according neighbor to MPI_PROC_NULL
 - A message sent to MPI_PROC_NULL will be ignored by the MPI library
- Easier: use cartesian topology functions
Laplace equation - communication in y-direction

- \(u(i,j) \) is stored in a matrix \(\text{!!assuming C!!} \)
 - \(n_{\text{local}} \): no of local points in x direction
 - \(n_{y\text{local}} \): no of local points in y direction
- Dimension of \(u \) on an inner process (= not being at a boundary):
 - \(u(n_{\text{local}} + 2, n_{y\text{local}} + 2) \)
- with
 - \(u(1:n_{x\text{local}}, 1:n_{y\text{local}}) \)
 containing the local data

```c
MPI_Request req[8];

MPI_Irecv(&u[1][nylocal+1], nxlocal, MPI_DOUBLE, nup, tag, comm, &req[0]);
MPI_Irecv(&u[1][0], nxlocal, MPI_DOUBLE, ndown, tag, comm, &req[1]);
MPI_Isend(&u[1][nylocal], nxlocal, MPI_DOUBLE, nup, tag, comm, &req[2]);
MPI_Isend(&u[1][1], nxlocal, MPI_DOUBLE, ndown, tag, comm, &req[3]);

// Waitall might be postponed until communication // in x-direction has also been posted
MPI_Waitall (4, req, MPI_STATUSES_IGNORE);
```
Laplace equation - communication in x-direction

- Problem: the data which we have to send is not contiguous in the memory
- Logical view of the matrix

- Layout in memory of the same matrix (in C)

Laplace equation - communication in x-direction

- How to implement the halo-cell exchange in x-direction?
 - Send/Recv every element in a separate message
 - works
 - very slow
 - derived datatypes
 - copy the data into a separate vector/array and send this array
 - works
 - a more general interface is provided by MPI to pack data into a contiguous buffer before sending
Packing a message

- **MPI_Pack** copies `incount` elements of type `dat` from `inbuf` into the user provided buffer `outbuf`
 - `outbuf` has to be large enough to hold the data
 - `pos` contains the position of the last packed data in `outbuf`. Has to be initialized to zero before first usage
 - can be called several times to pack independent pieces of data
- Send and receive a message, which has been packed using the MPI datatype **MPI_PACKED**

Packing a message (II)

- **outbuf** before pack, `pos=0`
- **outbuf** after 1st pack, `pos=6`
- **outbuf** after 1st pack, `pos=10`

```c
MPI_Pack(inbuf1, 1, MPI_INT, outbuf, &pos, comm);
MPI_Pack(inbuf2, 1, MPI_FLOAT, outbuf, &pos, comm);
```
Unpacking a message

MPI_Unpack(void *inbuf, int insize, int* pos,
void* outbuf, int outcount,
MPI_Datatype dat, MPI_Comm comm);

- MPI_Unpack copies \textit{outcount} elements of type \textit{dat} from \textit{inbuf} into the user provided buffer \textit{outbuf}
 - \textit{inbuf} holds the whole message
 - \textit{pos} contains the position of the last unpacked data in \textit{inbuf}. Has to be initialized to zero before first usage
 - can be called several times to pack independent pieces of data

Determining the size of the pack-buffer

MPI_Pack_size(int incount, MPI_Datatype dat,
MPI_Comm comm, int *size);

- MPI_Pack_size returns the size in bytes of the required buffer to pack \textit{incount} elements of type \textit{dat} using MPI_Pack
 - size might not be identical to \textit{incount *sizeof(original datatype)}
 - several calls to MPI_Pack_size required, if you plan to pack more than one type of \textit{dat}
 - sum up the returned sizes
 - you can use size e.g. to malloc a buffer
Laplace equation - communication in x-direction (I)

double *sbufleft, *sbufright, *rbufleft, *rbufright;
int bufsize, posleft=0, posright=0;

/* determine the required buffer sizes and allocate the buffers */
MPI_Pack_size (nylocal, MPI_DOUBLE, comm, &bufsize);
sbufleft = malloc(bufsize);
sbufright = malloc(bufsize);
rbufleft = malloc(bufsize);
rbufright = malloc(bufsize);

/* Pack the data before sending */
for (i=1; i<nylocal+1; i++) {
 MPI_Pack (u[nxlocal][i], 1, MPI_DOUBLE, sbufright, &posright, comm);
 MPI_Pack (u[1][i], 1, MPI_DOUBLE, sbufleft, &posleft, comm);
}

Laplace equation - communication in x-direction (II)

/* Execute now the real communication */
MPI_Irecv(rbufleft, bufsize, MPI_PACKED, nleft, tag, comm, &req[0]);
MPI_Irecv(rbufright, bufsize, MPI_PACKED, nright, tag, comm, &req[1]);
MPI_Isend(sbufleft, posleft, MPI_PACKED, nleft, tag, comm, &req[2]);
MPI_Isend(sbufright, posright, MPI_PACKED, nright, tag, comm, &req[3]);
MPI_Waitall (4, req, MPI_STATUSES_IGNORE);

/* Unpack the received data */
posright = posleft = 0;
for (i=1; i<nylocal+1; i++) {
 MPI_Unpack(rbufright, bufsize, &posright, u[nxlocal+1][i], 1, MPI_DOUBLE, comm);
 MPI_Unpack (rbufleft, bufsize, &posleft, u[0][i], 1, MPI_DOUBLE, comm);
}
Derived data types vs. pack/unpack

- Advantages of derived datatypes:
 - avoids temporary buffers
 - code potentially shorter
 - gives the MPI library the possibility to optimize the according operations

- Advantages of pack/unpack
 - might lead to performance advantages if the same packed buffer has to be sent to multiple targets
 - many users find pack/unpack intuitive
 - similar to simply copying the data items into a temporary buffer

Using derived datatypes

```c
MPI_Datatype coldat;

// Create a derived datatype describing a column of your vector
MPI_Type_vector (nylocal, 1, nxlocal, MPI_DOUBLE, &coldat );
MPI_Type_commit ( &coldat );

// use that datatype for the communication to your left and right neighbors
MPI_Irecv ( &(u[0][1]), 1, coldat, nleft, tag, comm, &req[4] );
MPI_Irecv ( &(u[nylocal+1][1], coldat, nright, tag, comm, &req[5] );
MPI_Isend ( &(u[1][1]), 1, coldat, nleft, tag, comm, &req[6] );
MPI_Isend ( &(u[nylocal][1]), 1, coldat, nright, tag, comm, &req[7] );
```

...