Motivation

• Can we estimate the costs for a parallel code in order to
 - Evaluate quantitative and qualitative differences between different implementation alternatives
 - Understand the parameters effecting the performance of the application
 - Understanding relevant hardware characteristics

• Restrictions:
 - Any analytical model can not replace real measurements since parallel systems are too complex and unpredictable.
How to model collective operations?

- E.g. MPI_Bcast: strongly depending on the algorithm used to implement the operation
 - One process (root process) distributes the same data items to all members within a process group (communicator)
- Linear Algorithm:
 - the root process sends one message to each process in

```c
... if (rank == root) {
    for (i=0; i<size; i++)
        if (i != root)
            MPI_Send(buf, cnt, dat, i, TAG, comm);
} else
    MPI_Recv(buf, cnt, dat, root, TAG, comm, &stat);
```

Linear Algorithm (I)

- Hockney’s Model: \(t(s) = l + \frac{1}{b} s \)
 - \(s \): message size
 - \(l \): latency
 - \(b \): bandwidth
- Estimate of the execution time according to Hockney’s model for \(p \) processes:

\[
 t(s, p) = (l + \frac{1}{b} s)^*(p-1) \quad (4:1)
\]
Linear Algorithm (II)

- Using non-blocking operations:

```c
if (rank == root ) {
    for (i=0; i<size; i++)
        MPI_Isend (buf, cnt, dat, i, TAG, comm, &req[i]);
}

MPI_Recv (buf, cnt, dat, root, TAG, comm, &stat);
if (rank == root ) {
    MPI_Waitall ( size, req, statuses);
}
```

- Formula (4:1) is now arbitrarily wrong
 - Several communications simultaneously ongoing
 - Maximum (optimal) number of messages depending on message size and network parameters

How does communication really work (I)

- Two protocols usually used internally:
 - Eager protocol:
 - message is sent immediately to the receiver, without waiting for the according receive to be posted
 - Usually used for short messages (e.g. 1 KB in Open MPI)
 - Rendezvous protocol:
 - Send a header to receiver
 - Wait for an acknowledgment - receive has started
 - Send message data
 - Avoids having to buffer large messages on the receiver process (unexpected messages)
How communication really works (II)

- Three levels of buffering
 - Application level (e.g. MPI_Bsend)
 - MPI library level - unexpected message queues
 - System buffering
- System buffering works similarly to file systems
 - e.g. for sockets: data is copied into socket buffer before sending
 - MPI_Send returns as soon as data is in the socket buffer!
 - No way to alternate this data anymore, so it is safe to return control to the application

How communication really works (III)

- For a short message (< socket buffer size (=sbsize))
 - Data copied into socket buffer
 - write operation on the according socket called
 - MPI_Send returns control to the application in a time which is shorter than the network latency!
- For a long message
 - Large message is split into chunks of size sbsize
 - A chunk of the data is copied into socket buffer and sent
 - As soon as the receiving process acknowledges the receipt of the data chunk, the next chunk is copied into socket buffer etc.
How communication really works (IV)

- So transfer of a large message looks like
 - Sending a small chunk
 - Wait
 - Sending a small chunk
 - Wait
- This behavior is not modeled by Hockney, but e.g. by the LogGP model
- Based on LogGP, one should split a large message into smaller chunks and send them simultaneously for a bcast operation
 - Hide the gap by using a different channel

Multi-segmented linear algorithm

```c
nmsgs = cnt/scnt;
if (rank == root) {
    for (j=0; j<nmsgs; j++) {
        tbuf = buf + (j*scnt);
        for (i=0; i<size; i++)
            MPI_Isend (tbuf, scnt, dat, i, TAG, comm,&req[2*j+i]);
    }
    for (j=0; j<nmsgs; j++) {
        tbuf = buf + (j*scnt);
        MPI_Irecv (tbuf, scnt, dat, root, TAG, comm, &rreq[j]);
    }
    if (rank == root) {
        MPI_Waitall ( size*nmsgs, req, statuses);
    }
    MPI_Waitall ( nmsgs, rreq, rstatuses);
}
```
Binary and Binomial Trees

Number of messages increase with every iteration
- network saturated starting from a certain number of messages
- message segmenting can improve the performance as well

Chain Algorithms

- Segment a message and pass them from one process to another
- Performs very well for very large messages
k-Chain Algorithm

e.g. k=5

Hockney’s Model

\[t(s) = l + s/b \]

- \(l \): latency of the network
- \(b \): bandwidth of the network
- How can we determine the latency and the bandwidth?
 - Ping-pong benchmark:
 - process A sends a message to process B, process B sends message back
 - Advantage: does not require synchronized clocks between A and B
 - Disadvantage: assumes symmetric communication performance (costs (A->B) == costs (B->A))
- To determine latency: execute ping-pong benchmark for cnt=0
Parallel Computation
Edgar Gabriel

Ping pong benchmark

```c
comm = MPI_COMM_WORLD;
for (i=1; i< MAX_MSG_LEN; i*=2 ) {
  t1 = MPI_Wtime();
  for ( j=0; j<MAX_MEASUREMENTS; j++ ) {
    if ( rank == 0 ) {
      MPI_Send (buf, i, MPI_INT, 1, 1, comm);
      MPI_Recv (buf, i, MPI_INT, 1, 1, comm, &status);
    }
    else if ( rank == 1 ) {
      MPI_Recv (buf, i, MPI_INT, 0, 1, comm, &status);
      MPI_Send (buf, i, MPI_INT, 0, 1, comm);
    }
  }
  t2 = MPI_Wtime();
  if ( rank == 0 ) {
    printf("Msg len: %d avg. exec.%lf bandw. %d 
",
       i, (t2-t1)/(2*MAX_MEASUREMENTS),
       i*sizeof(int)/((t2-t1)/(2*MAX_MEASUREMENTS));
  }
}
```

Ping-pong benchmark (II)
Ping-pong benchmark (II)

- To determine bandwidth: have to determine the saturation point
 - Required message length does depend on the network bandwidth

LogP

- Model published by Culler et al
- Parameters:
 - L: upper bound on the latency
 - o: overhead, defined as the length of the time that a process is engaged in the transmission or reception of a message. During this time, the process can not perform other operations
 - g: gap, defined as the minimum time interval between consecutive message transmissions or receptions. The reciprocal time of g corresponds to the per-process communication bandwidth
 - P: number of processors
Parallel Computation
Edgar Gabriel

LogP (II)

Start sending
Message enters network
Sender

Message leaves network
Receiver

End receiving

Costs for sending a message:

\[t = L + 2o \]
(19:1)

Costs for sending two messages:

\[t = L + g + 2o \]
(20:1)
LogP(III)

- Please note:
 - Latency in the LogP model is different than the latency in the Hockney model.
 - Latency of Hockney includes the overhead \(o \)
 - In the formula (20:1), we assumed that \(o < g \)
 which is typically correct. The formulas should however be instead
 \[
 t = L + \max(g, o) + 2o
 \]

LogP(III)

- LogP assumes, that any large message can be decomposed to a series of short messages
 e.g. sending a message of \(k \) bytes takes
 \[
 t = o + (\lceil k / w \rceil - 1) \max(g, o) + L + o
 \]
 with \(w \) being the size of the network package in bytes for which LogP still holds
- LogP assumes, that the overhead is equal for the sender and the receiver side
 - More fine grained approaches use different values, e.g. \(o_s \) and \(o_r \)
LogGP

- Extension of LogP taking into account, that large message can often be transferred more efficiently than what LogP predicts, due to special hardware support
- Additional parameter:
 \(G \): Gap per bytes for long messages
- Sending a \(k \) byte message with LogGP:
 - \(o \) cycles until the first byte enters the network
 - \(G \) cycles for each subsequent byte
 - \(o \) cycles on the receiver side

\[
t = o + (k - 1)G + L + o
\]

(23:1)

LogGP

Costs for sending two \(k \)-byte messages:

\[
t = o + (k - 1)G + g + (k - 1)G + L + o \\
= 2o + 2(k - 1)G + g + L
\]

(24:1)
PLogP

- Extension of the PLogP model making the parameters g, o_s and o_r dependent on the message length m
 - $g(m)$, $o_s(m)$ and $o_r(m)$
- Latency L is considered to be an end-to-end latency

<table>
<thead>
<tr>
<th>LogP/LogGP</th>
<th>PLogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>$L + g(1) - o_s(1) - o_r(1)$</td>
</tr>
<tr>
<td>o</td>
<td>$(o_s(1)+o_r(1))/2$</td>
</tr>
<tr>
<td>g</td>
<td>$g(1)$</td>
</tr>
<tr>
<td>G</td>
<td>$g(m)/m$, for sufficiently large m</td>
</tr>
<tr>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

PLogP(II)

Receiver spends $L + g(m)$ cycles in a recv operation.
PLogP(III)

- How can we determine the parameters of LogP, LogGP and PLogP
- Since we can determine the parameters of LogP/LogGP using the PLogP model, we will only focus on PLogP
- Idea: execute a series of measurements, whose performance you can model using PLogP, and which lead to a set of linearly independent equations
 - Determine the parameters from the equations

PLogP(IV)

- Test 1: Send \(n \) very small messages (\(m=0 \)) and wait for a single acknowledgement. Measure the
 - Time to send \(n \) messages of length 0: \(n^*g(0) \) (7)
 - RoundTripTime (RTT) = \(2(L+g(0)) \) (8)
- Test 2: Send a message of length \(m \) and wait for an ack of length 0. Measure the
 - Time to send a message of length \(m \): \(o_s(m) \) (9)
 - RTT(m) = \(L*g(m)+L+g(0) \) (10)
- Test 3: send a message of length 0, wait for \(\Delta > \text{RTT}(m) \) and receive than a message of length \(m \)
 - Since \(\Delta > \text{RTT}(m) \) we know that the message is available, and thus we really measure \(o_r(m) \) (11)
Please note, that
• since g is a network parameter (not software) n has to be sufficiently large to saturate the network.
Parallel Computation
Edgar Gabriel

PLogP(VII) – Test 3

Sender

Receiver

Example: linear broadcast
Example: linear broadcast

- Execution time according to LogP:
 - First message takes o cycles to push into the network
 - All subsequent messages take g cycles
 - The last message takes $L+o$ cycles to be received
 $t(P) = o+(P-2)g+L+o$

- Execution time according to LogGP:
 - First message takes $o+(k-1)G$ cycles
 - Subsequent messages take $g+(k-1)G$ cycles
 - Last message takes $L+o$ cycles to be received
 $t(k,P) = o+(P-2)g+(P-1)(k-1)G+L+o$

Example: non-segmented chain broadcast
Example: non-segmented chain broadcast

- Execution time according to LogP:
 - Root process takes o cycles to push the message into the network
 - A process takes $L+o$ cycles to receive the message and o cycles to push the message into the network
 - Last process takes $L+o$ cycles to receive the message

 $t(P) = o + (P-2)(L+2o) + L + o = (P-1)(L + 2o)$

- Similarly for LogGP:

 $t(k,P) = o + (k-1)G + (P-2)(L+2o+(k-1)G) + L + o$

 $= (P-1)(L+2o+(k-1)G)$