COSC 6374
Parallel Computation

Parallel Computer Architectures

Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart

Edgar Gabriel
Fall 2015

Flynn’s Taxonomy

- SISD: Single instruction single data
 - Classical von Neumann architecture
- SIMD: Single instruction multiple data
- MISD: Multiple instructions single data
 - Non existent, just listed for completeness
- MIMD: Multiple instructions multiple data
 - Most common and general parallel machine
Single Instruction Multiple Data (I)

- Also known as Array-processors
- A single instruction stream is broadcasted to multiple processors, each having its own data stream

![Diagram of Single Instruction Multiple Data (I)]

Single Instruction Multiple Data (II)

- Interesting detail: handling of if-conditions
 - First all processors, for which the if-condition is true execute the according code-section, other processors are on hold
 - Second, all processors for the if-condition is not true execute the according code-section, other processors are on hold
- Some architectures in the early 90s used SIMD (MasPar, Thinking Machines)
- No SIMD machines available today
- SIMD concept used in processors of your graphics card
Multiple Instructions Multiple Data (I)

- Each processor has its own instruction stream and input data
- Most general case - every other scenario can be mapped to MIMD
- Further breakdown of MIMD usually based on the memory organization
 - Shared memory systems
 - Distributed memory systems

Shared memory systems (I)

- All processes have access to the same address space
 - E.g. PC with more than one processor
- Data exchange between processes by writing/reading shared variables
 - Shared memory systems are easy to program
 - Current standard in scientific programming: OpenMP
- Two versions of shared memory systems available today
 - Symmetric multiprocessors (SMP)
 - Non-uniform memory access (NUMA) architectures
Symmetric multi-processors (SMPs)

- All processors share the same physical main memory
- Memory bandwidth per processor is limiting factor for this type of architecture
- Typical size: 2-16 processors

SMP processors: Example

- AMD 8350 quad-core Opteron (Barcelona)
 - Private L1 cache: 32 KB data, 32 KB instruction
 - Private L2 cache: 512 KB unified
 - Shared L3 cache: 2 MB unified
SMP processors: Example (II)

- Intel X7350 core2-quad (Tigerton)
 - Private L1 cache: 32 KB instruction, 32 KB data
 - Shared L2 cache: 4 MB unified cache

SMP systems: Example (III)

- Intel X7350 core2-quad (Tigerton) multi-processor configuration

Memory Controller Hub (MCH)
NUMA architectures (I)

• Some memory is closer to a certain processor than other memory
 - The whole memory is still addressable from all processors
 - Depending on what data item a processor retrieves, the access time might vary strongly

NUMA architectures (II)

• Reduces the memory bottleneck compared to SMPs
• More difficult to program efficiently
 - First touch policy: data item will be located in the memory of the processor which touches the data item first
 - Relative location of threads/processes to each other matter
• To reduce effects of non-uniform memory access, caches are often used
 - ccNUMA: cache-coherent non-uniform memory access architectures
• Largest example as of today: SGI Origin with 512 processors
NUMA systems: Example

- AMD 8350 quad-core Opteron (Barcelona): multi-processor configuration

```
Socket 0
<table>
<thead>
<tr>
<th>C</th>
<th>0</th>
<th>C</th>
<th>1</th>
<th>C</th>
<th>2</th>
<th>C</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
</tr>
</tbody>
</table>

Socket 1
<table>
<thead>
<tr>
<th>C</th>
<th>4</th>
<th>C</th>
<th>5</th>
<th>C</th>
<th>6</th>
<th>C</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
</tr>
</tbody>
</table>

Socket 2
<table>
<thead>
<tr>
<th>C</th>
<th>7</th>
<th>C</th>
<th>8</th>
<th>C</th>
<th>9</th>
<th>C</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
</tr>
</tbody>
</table>

Socket 3
<table>
<thead>
<tr>
<th>C</th>
<th>4</th>
<th>C</th>
<th>5</th>
<th>C</th>
<th>6</th>
<th>C</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
<td>HT</td>
<td></td>
</tr>
</tbody>
</table>
```

Distributed memory machines (I)

- Each processor has its own address space
- Communication between processes by explicit data exchange
 - Sockets
 - Message passing
 - Remote procedure call / remote method invocation
Distributed memory machines (II)

- Performance of a distributed memory machine strongly depends on the quality of the network interconnect and the topology of the network interconnect
 - Of-the-shelf technology: e.g. fast-Ethernet, gigabit-Ethernet
 - Specialized interconnects: InfiniBand, Myrinet, Quadrics, ...

Distributed memory machines (III)

- Two classes of distributed memory machines:
 - Massively parallel processing systems (MPPs)
 - Tightly coupled environment
 - Single system image (specialized OS)
 - Clusters
 - Of-the-shelf hardware and software components such as
 - Intel P4, AMD Opteron etc.
 - Standard operating systems such as LINUX, Windows, BSD UNIX
Hybrid systems

• E.g. clusters of multi-processor nodes

Important metrics:
 - Latency:
 • minimal time to send a very short message from one processor to another
 • Unit: ms, μs
 - Bandwidth:
 • amount of data which can be transferred from one processor to another in a certain time frame
 • Units: Bytes/sec, KB/s, MB/s, GB/s
 Bits/sec, Kb/s, Mb/s, Gb/s, baud

Network topologies (I)
Network topologies (II)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
<th>Optimal parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>A direct connection between two processors</td>
<td></td>
</tr>
<tr>
<td>Path</td>
<td>A route between two processors</td>
<td>As many as possible</td>
</tr>
<tr>
<td>Distance</td>
<td>Minimum length of a path between two processors</td>
<td>Small</td>
</tr>
<tr>
<td>Diameter</td>
<td>Maximum distance in a network</td>
<td>Small</td>
</tr>
<tr>
<td>Degree</td>
<td>Number of links that connect to a processor</td>
<td>Small (costs) / Large (redundancy)</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Minimum number of links that have to be cut to separate the network</td>
<td>Large (reliability)</td>
</tr>
<tr>
<td>Increment</td>
<td>Number of procs to be added to keep the properties of a topology</td>
<td>Small (costs)</td>
</tr>
<tr>
<td>Complexity</td>
<td>Number of links required to create a network topology</td>
<td>Small (costs)</td>
</tr>
</tbody>
</table>

Bus-Based Network (I)

- All nodes are connected to the same (shared) communication medium
- Only one communication at a time possible
 - Does not scale

- Examples: Ethernet, SCSI, Token Ring, Memory bus
- Main advantages:
 - simple broadcast
 - cheap
Bus-Based Networks (II)

- Characteristics
 - Distance: 1
 - Diameter: 1
 - Degree: 1
 - Connectivity: 1
 - Increment: 1
 - Complexity: 1

Directly connected networks

- A direct connection between two processors exists
- Network is built from these direct connections
- Relevant topologies
 - Ring
 - Star
 - Fully connected
 - Meshes
 - Toruses
 - Tree based networks
 - Hypercubes
Ring network

- \(N \): Number of processor connected by the network
- Distance: \(1: \frac{N}{2} \)
- Diameter: \(\frac{N}{2} \)
- Degree: 2
- Connectivity: 2
- Increment: 1
- Complexity: \(N \)

Star network

- All communication routed through a central node
 - Central processor is a bottleneck
- Distance: \(1 \) or \(2 \)
- Diameter: 2
- Degree: \(1 \) or \(N-1 \)
- Connectivity: 1
- Increment: 1
- Complexity: \(N-1 \)
Fully connected network

- Every node is connected directly with every other node

- Distance: 1
- Diameter: 1
- Degree: $N-1$
- Connectivity: $N-1$
- Increment: 1
- Complexity: $N(N-1)/2$

Meshes (I)

- E.g. 2-D mesh

- Distance: $1: \sim 2\sqrt{N}$
- Diameter: $\sim 2\sqrt{N}$
- Degree: 2-4
- Connectivity: 2
- Increment: $\sim\sqrt{N}$
- Complexity: $\sim 2N$
Meshes (II)

- E.g. 3-D mesh
 - Distance: $1: \sim 3\sqrt{N}$
 - Diameter: $\sim 3\sqrt{N}$
 - Degree: 3-6
 - Connectivity: 3
 - Increment: $-\left(\sqrt{N}\right)^2$
 - Complexity: \sim

Toruses (I)

- E.g. 2-D Torus
 - Distance: $1: \sim \sqrt{N}$
 - Diameter: $\sim \sqrt{N}$
 - Degree: 4
 - Connectivity: 4
 - Increment: $\sim \sqrt{N}$
 - Complexity: $\sim 2N$
Toruses (II)

- E.g. 3-D Torus

- Distance: $1: \sim \sqrt[3]{N}$
- Diameter: $\sim \sqrt[3]{N}$
- Degree: 6
- Connectivity: 6
- Increment: $\sim (\sqrt[3]{N})^2$
- Complexity: \sim

Picture not available!

Tree based networks (I)

- Leafs are computational nodes
- Intermediate nodes in the tree are switches
- Higher level switching elements suffer from contention
Tree-based networks (II)

- Fat tree: binary tree which increases the number of communication links between higher level switching elements to avoid contention

- Distance: \(1:2\log_2(N)\)
- Diameter: \(2\log_2(N)\)
- Degree: 1
- Connectivity: 1
- Increment: \(N\)
- Complexity: \(\sim 2N\)

Hypercube (I)

- An n-dimensional hypercube is constructed by doubling an n-1 dimensional hypercubes and connecting the according edges

0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube
Hypercubes (II)

4-D hypercube

Hypercubes (III)

- 4-D hypercube also often shown as

- Distance: $1: \log_2(N)$
- Diameter: $\log_2(N)$
- Degree: $\log_2(N)$
- Connectivity: $\log_2(N)$
- Increment: N
- Complexity: $\log_2(N) \times N/2$
Crossbar Networks (I)

- A grid of switches connecting $n \times m$ ports

- A connection from one process to another does not prevent communication between other process pairs

- Scales from the technical perspective

- Does not scale from the financial perspective

- Aggregated Bandwidth of a crossbar: sum of the bandwidth of all possible connections at the same time

Crossbar networks (II)

- Overcoming the financial problem by introducing multi-stage networks