DLD Lab

Introduction to VHDL

(Very High Speed Integrated Circuit Hardware Description Language)
Acknowledgment

This set of slides on VHDL are due to Brown and Vranesic.
ENTITY example1 IS
 PORT (x1, x2, x3 : IN BIT;
 f : OUT BIT);
END example1;

ARCHITECTURE LogicFunc OF example1 IS
BEGIN
 f <= (x1 AND x2) OR (NOT x2 AND x3);
END LogicFunc;

A simple logic function and corresponding VHDL code
ENTITY example2 IS
 PORT (x1, x2, x3, x4 : IN BIT ;
 f, g : OUT BIT) ;
END example2 ;

ARCHITECTURE LogicFunc OF example2 IS
BEGIN
 f <= (x1 AND x3) OR (NOT x3 AND x2) ;
 g <= (NOT x3 OR x1) AND (NOT x3 OR x4) ;
END LogicFunc ;

VHDL code for a four-input function
Logic circuit for four-input function
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY mux2to1 IS
 PORT (w0, w1, s : IN STD_LOGIC;
 f : OUT STD_LOGIC)
END mux2to1;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
 WITH s SELECT
 f <= w0 WHEN '0',
 w1 WHEN OTHERS;
END Behavior;

Figure 6.27 VHDL code for a 2-to-1 multiplexer
Figure 6.1 A 2-to-1 multiplexer

(a) Graphical symbol
(b) Truth table
(c) Sum-of-products circuit
(d) Circuit with transmission gates
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS
 PORT (w0, w1, w2, w3 : IN STD_LOGIC ;
 s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
 f : OUT STD_LOGIC) ;
END mux4to1 ;

ARCHITECTURE Behavior OF mux4to1 IS
BEGIN
 WITH s SELECT
 f <= w0 WHEN "00",
 w1 WHEN "01",
 w2 WHEN "10",
 w3 WHEN OTHERS ;
END Behavior ;

Figure 6.28 VHDL code for a 4-to-1 multiplexer
Figure 6.2 A 4-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all;
PACKAGE mux4to1_package IS
 COMPONENT mux4to1
 PORT (w0, w1, w2, w3 : IN STD_LOGIC ;
 s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
 f : OUT STD_LOGIC) ;
 END COMPONENT ;
END mux4to1_package ;

Figure 6.28 Component declaration for the 4-to-1 multiplexer
Figure 6.3 Using 2-to-1 multiplexers to build a 4-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY work;
USE work.mux4to1_package.all;

ENTITY mux16to1 IS
 PORT (w : IN STD_LOGIC_VECTOR(0 TO 15) ;
 s : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
 f : OUT STD_LOGIC) ;
END mux16to1 ;

ARCHITECTURE Structure OF mux16to1 IS
 SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;
BEGIN
 Mux1: mux4to1 PORT MAP (w(0), w(1), w(2), w(3), s(1 DOWNTO 0), m(0)) ;
 Mux2: mux4to1 PORT MAP (w(4), w(5), w(6), w(7), s(1 DOWNTO 0), m(1)) ;
 Mux3: mux4to1 PORT MAP (w(8), w(9), w(10), w(11), s(1 DOWNTO 0), m(2)) ;
 Mux4: mux4to1 PORT MAP (w(12), w(13), w(14), w(15), s(1 DOWNTO 0), m(3)) ;
 Mux5: mux4to1 PORT MAP
 (m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f) ;
END Structure ;

Figure 6.29 Hierarchical code for a 16-to-1 multiplexer
Figure 6.4 A 16-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dec2to4 IS
 PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 En : IN STD_LOGIC;
 y : OUT STD_LOGIC_VECTOR(0 TO 3));
END dec2to4;

ARCHITECTURE Behavior OF dec2to4 IS
 SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0);
BEGIN
 Enw <= En & w;
 WITH Enw SELECT
 y <= "1000" WHEN "100",
 "0100" WHEN "101",
 "0010" WHEN "110",
 "0001" WHEN "111",
 "0000" WHEN OTHERS ;
END Behavior;

Figure 6.30 VHDL code for a 2-to-4 binary decoder
Figure 6.16 A 2-to-4 decoder
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY mux2to1 IS
 PORT (w0, w1, s : IN STD_LOGIC;
 f : OUT STD_LOGIC);
END mux2to1;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
 f <= w0 WHEN s = '0' ELSE w1;
END Behavior;

Figure 6.31 A 2-to-1 multiplexer using a conditional signal assignment
ENTITY priority IS
 PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
 y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
 z : OUT STD_LOGIC) ;
END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN
 y <= "11" WHEN w(3) = '1' ELSE
 "10" WHEN w(2) = '1' ELSE
 "01" WHEN w(1) = '1' ELSE
 "00" ;
 z <= '0' WHEN w = "0000" ELSE '1' ;
END Behavior ;
<table>
<thead>
<tr>
<th>w_3</th>
<th>w_2</th>
<th>w_1</th>
<th>w_0</th>
<th>y_1</th>
<th>y_0</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>d</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 6.24 Truth table for a 4-to-2 priority encoder
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY priority IS
 PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
 z : OUT STD_LOGIC);
END priority;

ARCHITECTURE Behavior OF priority IS
BEGIN
 WITH w SELECT
 y <= "00" WHEN "0001",
 "01" WHEN "0010",
 "01" WHEN "0011",
 "10" WHEN "0100",
 "10" WHEN "0101",
 "10" WHEN "0110",
 "10" WHEN "0111",
 "11" WHEN OTHERS ;
 WITH w SELECT
 z <= '0' WHEN "0000",
 '1' WHEN OTHERS ;
END Behavior ;

Figure 6.33 Less efficient code for a priority encoder
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY compare IS
 PORT (A, B : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 AeqB, AgtB, AltB : OUT STD_LOGIC)
END compare;

ARCHITECTURE Behavior OF compare IS
BEGIN
 AeqB <= '1' WHEN A = B ELSE '0';
 AgtB <= '1' WHEN A > B ELSE '0';
 AltB <= '1' WHEN A < B ELSE '0';
END Behavior;

Figure 6.34 VHDL code for a four-bit comparator
Figure 6.26 A four-bit comparator circuit
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY compare IS
 PORT (A, B : IN SIGNED(3 DOWNTO 0) ;
 AeqB, AgtB, AltB : OUT STD_LOGIC) ;
END compare ;

ARCHITECTURE Behavior OF compare IS
BEGIN
 AeqB <= '1' WHEN A = B ELSE '0' ;
 AgtB <= '1' WHEN A > B ELSE '0' ;
 AltB <= '1' WHEN A < B ELSE '0' ;
END Behavior ;

Figure 6.35 A four-bit comparator using signed numbers
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY mux2to1 IS
 PORT (w0, w1, s : IN STD_LOGIC;
 f : OUT STD_LOGIC);
END mux2to1;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
 PROCESS (w0, w1, s)
 BEGIN
 IF s = '0' THEN
 f <= w0;
 ELSE
 f <= w1;
 END IF;
 END PROCESS;
END Behavior;

Figure 6.38 A 2-to-1 multiplexer specified using an if-then-else statement
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY mux2to1 IS
 PORT (w0, w1, s : IN STD_LOGIC;
 f : OUT STD_LOGIC)
END mux2to1;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
 PROCESS (w0, w1, s)
 BEGIN
 f <= w0;
 IF s = '1' THEN
 f <= w1;
 END IF;
 END PROCESS;
END Behavior;

Figure 6.39 Alternative code for a 2-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY priority IS
 PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
 z : OUT STD_LOGIC);
END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN
 PROCESS (w)
 BEGIN
 IF w(3) = '1' THEN
 y <= "11" ;
 ELSIF w(2) = '1' THEN
 y <= "10" ;
 ELSIF w(1) = '1' THEN
 y <= "01" ;
 ELSE
 y <= "00" ;
 END IF ;
 END PROCESS ;
z <= '0' WHEN w = "0000" ELSE '1' ;
END Behavior ;

Figure 6.40 A priority encoder specified using if-then-else
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY priority IS
 PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
 z : OUT STD_LOGIC);
END priority;

ARCHITECTURE Behavior OF priority IS
BEGIN
 PROCESS (w)
 BEGIN
 y <= "00" ;
 IF w(1) = '1' THEN y <= "01" ; END IF ;
 IF w(2) = '1' THEN y <= "10" ; END IF ;
 IF w(3) = '1' THEN y <= "11" ; END IF ;
 z <= '1' ;
 IF w = "0000" THEN z <= '0' ; END IF ;
 END PROCESS ;
END Behavior ;

Figure 6.41 Alternative code for the priority encoder
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY compare1 IS
 PORT (A, B : IN STD_LOGIC;
 AeqB : OUT STD_LOGIC);
END compare1;

ARCHITECTURE Behavior OF compare1 IS
BEGIN
 PROCESS (A, B)
 BEGIN
 AeqB <= '0';
 IF A = B THEN
 AeqB <= '1';
 END IF;
 END PROCESS;
END Behavior;

Figure 6.42 Code for a one-bit equality comparator
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY mux2to1 IS
 PORT (w0, w1, s : IN STD_LOGIC;
 f : OUT STD_LOGIC);
END mux2to1;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
 PROCESS (w0, w1, s)
 BEGIN
 CASE s IS
 WHEN '0' =>
 f <= w0 ;
 WHEN OTHERS =>
 f <= w1 ;
 END CASE ;
 END PROCESS ;
END Behavior ;

Figure 6.45 A CASE statement that represents a 2-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dec2to4 IS
 PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 En : IN STD_LOGIC;
 y : OUT STD_LOGIC_VECTOR(0 TO 3));
END dec2to4 ;
ARCHITECTURE Behavior OF dec2to4 IS
BEGIN
 PROCESS (w, En)
 BEGIN
 IF En = '1' THEN
 CASE w IS
 WHEN "00" => y <= "1000";
 WHEN "01" => y <= "0100";
 WHEN "10" => y <= "0010";
 WHEN OTHERS => y <= "0001";
 END CASE;
 ELSE
 y <= "0000";
 END IF;
 END PROCESS;
END Behavior ;

Figure 6.46 A 2-to-4 binary decoder
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY seg7 IS
 PORT (bcd : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 leds : OUT STD_LOGIC_VECTOR(1 TO 7));
END seg7;
ARCHITECTURE Behavior OF seg7 IS
BEGIN
 PROCESS (bcd)
 BEGIN
 CASE bcd IS
 WHEN "0000" => leds <= "1111110" ;
 WHEN "0001" => leds <= "0110000" ;
 WHEN "0010" => leds <= "1101101" ;
 WHEN "0011" => leds <= "1111001" ;
 WHEN "0100" => leds <= "0110011" ;
 WHEN "0101" => leds <= "1011011" ;
 WHEN "0110" => leds <= "1011111" ;
 WHEN "0111" => leds <= "1110000" ;
 WHEN "1000" => leds <= "1111111" ;
 WHEN "1001" => leds <= "1110011" ;
 WHEN "1010" => leds <= "1011011" ;
 WHEN "1011" => leds <= "1110000" ;
 WHEN "1100" => leds <= "1111111" ;
 WHEN "1101" => leds <= "1110011" ;
 WHEN OTHERS => leds <= "-------" ;
 END CASE ;
 END PROCESS ;
END Behavior ;

Figure 6.47 A BCD-to-7-segment decoder