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ABSTRACT 
Opinionated social media such as product reviews are now widely 
used by individuals and organizations for their decision making. 
However, due to the reason of profit or fame, people try to game 
the system by opinion spamming (e.g., writing fake reviews) to 
promote or to demote some target products. In recent years, fake 
review detection has attracted significant attention from both the 
business and research communities. However, due to the difficulty 
of human labeling needed for supervised learning and evaluation, 
the problem remains to be highly challenging. This work proposes 
a novel angle to the problem by modeling spamicity as latent. An 
unsupervised model, called Author Spamicity Model (ASM), is 
proposed. It works in the Bayesian setting, which facilitates 
modeling spamicity of authors as latent and allows us to exploit 
various observed behavioral footprints of reviewers. The intuition 
is that opinion spammers have different behavioral distributions 
than non-spammers. This creates a distributional divergence 
between the latent population distributions of two clusters: 
spammers and non-spammers. Model inference results in learning 
the population distributions of the two clusters. Several extensions 
of ASM are also considered leveraging from different priors. 
Experiments on a real-life Amazon review dataset demonstrate the 
effectiveness of the proposed models which significantly 
outperform the state-of-the-art competitors. 

Categories and Subject Descriptors 
H.1.2 [Information Systems]: Human Factors; J.4 [Computer 
Applications]: Social and Behavioral Sciences 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
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1. INTRODUCTION 
Online reviews of products and services are used extensively by 

consumers and businesses to make critical purchase, product 
design, and customer service decisions. However, due to the 
financial incentives associated with positive reviews, imposters 
try to game the system by posting fake reviews and giving unfair 
ratings to promote or demote target products and services. Such 
individuals are called opinion spammers and their activities are 

called opinion spamming [14]. The problem of opinion spam is 
widespread, and many high-profile cases have been reported in 
the news [40]. In fact the menace has become so serious that 
Yelp.com has launched a “sting” operation to publicly shame 
businesses who buy fake reviews [39]. 

In recent years, researchers have also studied the problem and 
proposed several techniques. However, the problem is still wide 
open. Unlike many other forms of spamming, the key difficulty 
for solving the opinion spam problem is that it is hard to find 
gold-standard data of fake and non-fake reviews for model 
building because it is very difficult, if not impossible, to manually 
recognize/label fake/non-fake reviews by mere reading [14, 34].  

Since it was first studied in [14], various methods have been 
proposed to detect opinion spam. One of the main methods is 
supervised learning [10, 14, 34]. However, due to the lack of 
reliable ground truth label of fake/non-fake review data, existing 
works have relied mostly on ad-hoc or pseudo fake/non-fake 
labels for model building. In [14], duplicate and near duplicate 
reviews were assumed to be fake reviews, which is restrictive and 
can be unreliable. In [25], a manually labeled dataset was used, 
which also has reliability issues because it has been shown that 
the accuracy of human labeling of fake reviews is very poor [34]. 
In [34], Amazon Mechanical Turk (AMT) was employed to 
crowdsource fake hotel reviews by paying (US$1 per review) 
anonymous online workers (called Turkers) to write fake reviews 
for some hotels. Although these reviews are fake, they do not 
reflect the dynamics of fake reviews in a commercial website [31] 
as the Turkers do not have the same psychological state of mind 
when they write fake reviews as that of fake reviewers in a 
commercial website who have real business interests to promote 
or to demote. Also, Turkers may not have sufficient domain 
knowledge or experience to write convincing fake reviews. Due to 
the lack of labeled data, unsupervised methods have also been 
proposed for detecting individual [26, 42] and group [29, 30] 
spammers, time-series [46] and distributional [9] analysis, and 
mining reviewing patterns as unexpected association rules [15] 
and reviewing burstiness [8]. 

In a wide field, a study of bias and controversy of research 
paper reviews was reported in [24]. However, research paper 
reviews do not usually involve faking. Web spam [3, 38, 45], 
email spam [5], blog spam [22], clickbots [19], auction fraud [35], 
social networks [13], etc. have also been widely investigated. 
However, the dynamics of these forms of spamming are quite 
different from those of opinion spamming in reviews. 

The above existing works in opinion spam have made good 
progresses. However, they are largely based on heuristics and/or 
hinge on ad-hoc fake/non-fake labels for model building. No 
principled or theoretical models have been proposed so far. 

This paper proposes a novel and principled technique to model 
and to detect opinion spamming in a Bayesian framework. It 
transcends the existing limitations discussed above and presents 
an unsupervised method for detecting opinion spam. We take a 
fully Bayesian approach and formulate opinion spam detection as 
a clustering problem. The Bayesian setting allows us to model 
spamicity of reviewers as latent with other observed behavioral 
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features in our Author Spamicity Model (ASM). Spamicity here 
means the degree of being spamming. The key motivation hinges 
on the hypothesis that opinion spammers differ from others on 
behavioral dimensions [29]. This creates a separation margin 
between population distributions of two naturally occurring 
clusters: spammers and non-spammers. Inference in ASM results 
in learning the distributions of two clusters (or classes) based on a 
set of behavioral features. Various extensions of ASM are also 
proposed exploiting different priors.  

In summary, this paper makes the following contributions:  
1. It proposes a novel and principled method to exploit observed 

behavioral footprints to detect spammers (fake reviewers) in an 
unsupervised Bayesian framework precluding the need of any 
manual labels for learning which is both hard [14] and noisy 
[34]. A key advantage of employing Bayesian inference is that 
the model facilities characterization of various spamming 
activities using estimated latent variables and the posterior. It 
facilitates both detection and analysis in a single framework 
rendering a deep insight into the opinion spam problem. This 
cannot be done using existing methods. To our knowledge, this 
is the first principled model for solving this problem. 

2. It proposes a novel technique to evaluate the results without 
using any labeled data. This method uses reviews of the top 
ranked and bottom ranked authors produced by the model as 
two classes of data to build a supervised classifier. The key 
idea is that the classification uses a complete different set of 
features than those used in modeling. Thus, if this classifier can 
classify accurately, it gives a good confidence that the 
unsupervised spamicity model is effective (details in §3.3). 

3. It conducts a comprehensive set of experiments to evaluate the 
proposed model based on the classification evaluation method 
above and also human expert judgment. It also compares with a 
set of strong baseline techniques. The results show that the 
proposed models outperform the baselines significantly. 

2. MODEL 
This section details the proposed unsupervised model. We first 

discuss the basic intuition (§2.1) and the observed features (§2.2). 
In §2.3, we explain the generative process of our model and detail 
inference methods in §2.4 and §2.5. 

2.1 Model Overview 
As discussed above, the proposed model formulates spam 

detection as an unsupervised clustering problem in the Bayesian 
setting. It belongs to the class of generative models for clustering 
[6] based on a set of observed features. It models spamicity, 𝑠𝑎 
(degree/tendency of spamming in the range [0, 1]) of an author, 𝑎; 
and spam/non-spam label, 𝜋𝑟 of a review, 𝑟 as latent variables. 𝜋𝑟 
is essentially the class variable reflecting the cluster memberships 
(we have two clusters, 𝐾 = 2, spam and non-spam) for every 
review instance. Each author/reviewer (and respectively each 
review) has a set of observed features (behavioral clues) emitted 
according to the corresponding latent prior class distributions. 
Model inference learns the latent population distributions of the 
two clusters across various behavioral dimensions, and also the 
cluster assignments of reviews in the unsupervised setting based 
on the principle of probabilistic model-based clustering [37]. 

As the generative process of ASM conditions review spam 
labels on author spamicites, inference also results in author 
spamicity estimates (probability of spamming) facilitating ranking 
of authors based on spamicity which is our main focus.  

2.2 Observed Features 
Here we propose some characteristics of abnormal behaviors 

which are likely to be linked with spamming and thus can be 
exploited as observed features in our model for learning the spam 

and non-spam clusters. We first list the author features and then 
the review features. The notations are listed in Table 1. 
Author Features: Author features have values in [0, 1]. A value 
close to 1 (respectively 0) indicates spamming (non-spamming). 
1. Content Similarity (𝑪𝑺): As crafting a new review every time 
is time consuming, spammers are likely to copy reviews across 
similar products. It is thus useful to capture the content similarity 
of reviews (using cosine similarity) of the same author. We chose 
the maximum similarity to capture the worst spamming behavior. 

𝑓𝐶𝐵(𝑎) = 𝑓1(𝑎) = max𝑟𝑖,𝑟𝑗∈𝑅𝑎,𝑖<𝑗 𝑐𝑜𝑠𝑖𝑛𝑒�𝑟𝑖 , 𝑟𝑗�    (1) 

2. Maximum Number of Reviews (𝑴𝑵𝑹): Posting many 
reviews in a single day also indicates an abnormal behavior. This 
feature computes the maximum number of reviews in a day for an 
author and normalizes it by the maximum value for our data. 

𝑓𝑀𝑀𝑅(𝑎) = 𝑓2(𝑎) = 𝑀𝑎𝑥𝑅𝑒𝑣(𝑎)
max𝑎∈𝐴(𝑀𝑎𝑥𝑅𝑒𝑣(𝑎))

    (2) 

3. Reviewing Burstiness (𝑩𝑺𝑻): The study in [29] reports that 
opinion spammers are usually not longtime members of a site. 
Genuine reviewers, however, use their accounts from time to time 
to post reviews. It is thus useful to exploit the activity freshness of 
an account in detecting spamming. We define reviewing 
burstiness using the activity window (difference of first and last 
review posting dates). If reviews are posted over a reasonably 
long timeframe, it probably indicates normal activity. However, 
when all reviews are posted within a very short burst (𝜏 = 28 days, 
estimated in §3.1), it is likely to be a spam infliction. 

𝑓𝐵𝐵𝐸(𝑎) = 𝑓3(𝑎) = �
0, 𝐿(𝑎) − 𝐹(𝑎) > 𝜏 

1 − 𝐿(𝑎)−𝐸(𝑎)
𝜏

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (3) 

4. Ratio of First Reviews (𝑹𝑭𝑹): Spamming early can impact the 
initial sales as people rely on the early reviews. Hence, spammers 
would try to be among the first reviewers for products as this 
enables them to control the sentiment [26]. We compute the ratio 
of first reviews to total reviews for each author. First reviews refer 
to reviews where the author is the first reviewer for the products. 

𝑓𝑅𝐸𝑅(𝑎) = 𝑓4(𝑎) = |{𝑟∈𝑅𝑎 ∶ 𝑟 𝑖𝑠 𝑎𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑣𝑖𝑒𝑤 }|
|𝑅𝑎|

    (4) 

Review Features: We have 5 binary review features. Values of 1 

Variable/Functions Description 
𝑎; 𝐴; 𝑟; 𝑟𝑎 = (𝑎, 𝑟) Author 𝑎; set of all authors; a review; review 𝑟 by author 𝑎 

𝑅𝑎, 𝑝(𝑟𝑎) All reviews by 𝑎, 𝑅𝑎 = {𝑟𝑎}; associated product 𝑝 for 𝑟𝑎 
𝑅𝑝;𝑅𝑎,𝑝 Reviews on product, 𝑝; Reviews on product 𝑝 by author 𝑎 

⋆ (𝑟𝑎 ,𝑝(𝑟𝑎)) The ⋆ rating of 𝑟𝑎 on product  𝑝(𝑟𝑎) on the 5-⋆ rating scale 
𝑀𝑎𝑥𝑅𝑒𝑣(𝑎) Maximum # of reviews posted in a day by an author, 𝑎 
𝐹(𝑎); 𝐿(𝑎) First posting date of 𝑎; last posting date of 𝑎 
𝐿(𝑎,𝑝); 𝐴(𝑝) Last review posting date by 𝑎 on 𝑝; product 𝑝’s launch date  
𝑘 ∈ {𝑠̂, 𝑛�} Class variable 𝑘 for Spam/Non-spam class (label) 

𝑠𝑎~𝐵𝑒𝑡𝑎(𝛼𝑠̂ ,𝛼𝑛�) Spamicity of an author, 𝑎, , 𝑠𝑎 ∈ [0, 1] 
𝛼𝑘∈{𝑠̂,𝑛�}
𝑎  Beta shape parameters (priors) for 𝑠𝑎 for each author 𝑎 

𝜋𝑟𝑎~𝐵𝑒𝑟𝑛(𝑠𝑎) Spam/Non-spam class label for review 𝑟𝑎, 𝜋𝑟𝑎 ∈ {𝑠̂,𝑛�} 
𝜃𝑘∈{𝑠̂,𝑛�}
𝑓 ~𝐵𝑒𝑡𝑎�𝛾𝑠̂

𝑓, 𝛾𝑛�
𝑓� Per class prob. of exhibiting the review behavior, 𝑓5…9 

𝛾𝑘∈{𝑠̂,𝑛�}
𝑓  Beta shape parameters of 𝜃𝑓 for each review behavior, 𝑓 

𝜓𝑘∈{𝑠̂,𝑛�}
𝑓 ~𝐵𝑒𝑡𝑎 Per class probability of exhibiting the author behavior, 𝑓1…4 
𝜓𝑘,1
𝑓  ; 𝜓𝑘,2

𝑓  Beta shape parameters of class 𝑘 for behavior 𝑓 
𝑥𝑎,𝑟
𝑓 ~𝐵𝑒𝑟𝑛�𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 � Observed review feature, 𝑓 ∈ {𝐷𝑈𝑃,𝐸𝑋𝑇,𝐷𝐸𝑉,𝐸𝑇𝐹,𝑅𝐴} 
𝑦𝑎,𝑟
𝑓 ~𝜓𝑘∈{𝑠̂,𝑛�}

𝑓  Observed author features 𝑓 ∈ {𝐶𝑆,𝑀𝑁𝑅,𝐵𝑆𝑇,𝑅𝐹𝑅} 
𝑛𝑎,𝑠̂;  𝑛𝑎,𝑛�  # of reviews of author 𝑎 assigned to spam; non-spam class 

𝑛𝑘,𝐷
𝑓 ;  𝑛𝑘,𝑅

𝑓  # of reviews in class 𝑘 ∈ {𝑠̂,𝑛�} which have review feature f 
(P)resent (𝑓 attains value 1); (A)bsent (𝑓 attains value 0) 

𝑛𝑎;𝑛𝑘∈{𝑠̂,𝑛�} # of reviews by author 𝑎; # of reviews in class 𝑘 
𝐾 Total number of clusters in the model 

Table 1: List of notations 
 



indicate spamming while 0 non-spamming. 
5. Duplicate/Near Duplicate Reviews (𝑫𝑼𝑷): Spammers often 
post multiple reviews which are duplicate/near-duplicate versions 
of previous reviews on the same product to boost ratings [26]. To 
capture this phenomenon, we compute the review feature (𝑓𝐷𝐷𝐷) 
duplicate reviews on the same product as follows: 

𝑓𝐷𝐷𝐷(𝑟𝑎) = 𝑓5(𝑎, 𝑟) = �
1,∃𝑟 ∈ 𝑅𝑝=𝑝(𝑟𝑎) 𝑐𝑜𝑠𝑖𝑛𝑒(𝑟𝑎, 𝑟) > 𝛽1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (5) 

𝑓𝐷𝐷𝐷 attains a value of 1 for a review 𝑟𝑎 by an author 𝑎 on product 
𝑝, if it is similar (using cosine similarity based on some threshold, 
𝛽1= 0.7 (say)) to any other review on 𝑝. 𝛽1 is estimated in §3.1. 
6. Extreme Rating (𝑬𝑿𝑻): On a 5-star (⋆) rating scale, it reflects 
the intuition that to inflict spam, spammers are likely to give 
extreme ratings (1⋆ or 5⋆) in order to demote/promote products. 

𝑓𝐸𝐸𝐸(𝑟𝑎) = 𝑓6(𝑎, 𝑟) = �
1,⋆ (𝑟𝑎 ,𝑝(𝑟𝑎)) ∈ {1,5} 

0,⋆ (𝑟𝑎 ,𝑝(𝑟𝑎)) ∈ {2,3, 4}     (6) 

7. Rating Deviation (𝑫𝑬𝑽): Review spamming usually involves 
wrong projection either in the positive or negative light so as to 
alter the true sentiment on products. This hints that ratings of 
spammers often deviate from the average ratings given by other 
reviewers. This feature attains the value of 1 if the rating deviation 
of a review exceeds some threshold 𝛽2. 𝛽2 is estimated in §3.1. 
We normalize by the maximum deviation, 4 on a 5-star scale. 

𝑓𝐷𝐸𝐷(𝑟𝑎) = 𝑓7(𝑎, 𝑟) = �1,
� ⋆�𝑟𝑎 ,   𝑝(𝑟𝑎)�−𝐸�⋆�𝑟𝑎′≠𝑎 ,   𝑝(𝑟𝑎)�� �

4
> 𝛽2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (7) 

The expectation is taken over all reviews on product 𝑝 = 𝑝(𝑟𝑎) by 
other authors, 𝑎′ ≠ 𝑎, to get the average rating on 𝑝. 
8. Early Time Frame (𝑬𝑻𝑭): [26] argues that spammers often 
review early to inflict spam as the early reviews can greatly 
impact people’s sentiment on a product. To capture this spamming 
characteristic, we propose the following feature: 

𝑓𝐸𝐸𝐸(𝑟𝑎) = 𝑓8(𝑎, 𝑟) = �1,𝐸𝑇𝐹(𝑟𝑎,𝑝(𝑟𝑎)) > 𝛽3
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 𝐸𝑇𝐹(𝑟𝑎,𝑝) = �
0, 𝐿(𝑎, 𝑝) − 𝐴(𝑝) > 𝛿

1 − 𝐿(𝑎,𝑝)−𝑅(𝑝)
𝛿

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8) 

𝐸𝑇𝐹(𝑟𝑎,𝑝) captures how early an author 𝑎 reviewed the product 𝑝. 
𝛿 = 7 months is a threshold for denoting earliness (estimated in 
§3.1). The definition says that if the latest review is beyond 7 
months of product launch, it is no longer considered to be early. 
At the other extreme, if reviews are posted just after launch this 
feature attains a value of 1. 𝛽3 is the corresponding threshold 
indicating spamming and is estimated in §3.1. 
9. Rating Abuse (𝑹𝑨): This feature captures the abuse caused by 
multiple ratings on the same product. Multiple ratings/reviews on 
the same product are unusual. Although this feature is similar to 
𝐷𝑈𝑃, it focuses on the rating dimension rather than content. 
Rating abuse, 𝑅𝐴(𝑎,𝑝) is defined by the similarity of ratings of an 
author, 𝑎 towards a product, 𝑝 across multiple reviews by the 
author weighted by the total number of reviews on the product. 

𝑓𝑅𝑅(𝑟𝑎) = 𝑓9(𝑎, 𝑟) = �1,𝑅𝐴(𝑎,𝑝(𝑟𝑎)) > 𝛽4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  ; 

𝑅𝐴(𝑎,𝑝) = |𝑅𝑎,𝑝| �1 − 1
4
�max𝑟∈𝑅𝑎,𝑝(⋆ (𝑟, 𝑝)) − min𝑟∈𝑅𝑎,𝑝(⋆ (𝑟, 𝑝))��   (9) 

The similarity of multiple star rating is computed using the 
difference between maximum and minimum star rating on a 5-star 
scale to capture consistent high/low ratings. The normalization 
constant is 4 as it is the maximum possible rating difference. For 
multiple ratings in genuine cases where ratings change (e.g., after 
correct use), the feature attains lower values. 𝛽4 is the rating abuse 
threshold indicating spamming and is estimated in §3.1. 

2.3 Process 
In ASM, spam detection is influenced by review and author 

features. Normalized continuous author features in [0, 1] are 

modeled as following a Beta distribution  ( 𝑦𝑎,𝑟
𝑓 ~ 𝜓𝑘∈{𝑠̂,𝑛�}

𝑓 ) (Table 
1). This enables ASM to capture more fine grained dependencies 
of author’s behaviors with spamming. However, review features 
being more objective, we found that they are better captured when 
modeled as binary variables being emitted from a Bernoulli 
distribution (𝑥𝑎,𝑟

𝑓 ~𝐵𝑒𝑟𝑛 �𝜃𝑘∈{𝑠̂,𝑛�}
𝑓 � (Table 1). 𝜃𝑘∈{𝑠̂,𝑛�}

𝑓  for each review 
feature 𝑓 ∈ {𝐷𝑈𝑃,𝐸𝑋𝑇,𝐷𝐸𝑉,𝐸𝑇𝐹,𝑅𝐴} and 𝜓𝑘∈{𝑠̂,𝑛�}

𝑓  for each author 
feature 𝑓 ∈ {𝐶𝑆,𝑀𝑁𝑅,𝐵𝑆𝑇,𝑅𝐹𝑅} denote the per class/cluster (spam vs. 
non-spam) probability of emitting feature 𝑓.  

Latent variables 𝑠𝑎 and 𝜋𝑟 denote the spamicity of an author, 𝑎 
and the (spam/non-spam) class of each review, 𝑟. The objective of 
ASM is to learn the latent behavior distributions for spam and 
non-spam clusters (𝐾 = 2) along with spamicites of authors from 
the observed features. We now detail its generative process. 
1. For each class/cluster, 𝑘 ∈ {𝑠̂,𝑛�}: 

Draw 𝜃𝑘
𝑓∈{𝐷𝐷𝐷,…,𝑅𝑅}~𝐵𝑒𝑡𝑎( 𝛾𝑓) 

2. For each (author), 𝑎 ∈ {1 …𝐴}: 
i. Draw spamicity, 𝑠𝑎~𝐵𝑒𝑡𝑎(𝛼𝑎); 
ii. For each review, 𝑟𝑎 ∈ {1 …𝑅𝑎}: 

a. Draw its class, 𝜋𝑟𝑎~𝐵𝑒𝑟𝑛(𝑠𝑎) 
b. Emit review features 𝑓 ∈ {𝐷𝑈𝑃, … ,𝑅𝐴}: 
𝑥𝑟𝑎
𝑓  ~ 𝐵𝑒𝑟𝑛 �𝜃𝜋𝑟𝑎

𝑓 � ; 
c. Emit author features 𝑓 ∈ {𝐶𝑆, . . ,𝑅𝐹𝑅}: 
𝑦𝑟𝑎
𝑓  ~ 𝜓𝜋𝑟𝑎

𝑓 ; 

We note that the observed author features are placed in the 
review plate (Figure 1). This is because each author behavior can 
be thought of as percolating through reviews of that author and 
emitted across each review to some extent. Doing this renders two 
key advantages: i) It permits us to exploit a larger co-occurrence 
domain. ii) It paves the way for a simpler sampling distribution 
providing for faster inference. 

2.4 Inference 
We employ approximate posterior inference with Monte Carlo 

Gibbs sampling, and use Rao-Blackwellization [2] to reduce 
sampling variance by collapsing on the latent variables 𝑠 and 𝜃𝑓. 
As observed author features obtaining values in [0, 1] are modeled 
as continuous Beta distributions, sparsity is considerably reduced 
as far as parameter estimation of 𝜓𝑓∈{𝐶𝐵,…𝑅𝐸𝑅} is concerned. Hence, 
to ensure speed, we estimate 𝜓𝑘

𝑓using the method of moments, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Plate Notation of ASM. 
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once per sweep of Gibbs sampling. The Gibbs sampler is given 
by: 

𝑝(𝜋𝑖 = 𝑘|𝝅¬𝒊 … ) ∝ 
𝑛𝑎,𝑘¬𝑖+𝛼𝑘

𝑎

�𝑛𝑎+𝛼𝑠�
𝑎+𝛼𝑛�

𝑎�¬𝑖
× ∏ �𝑔�𝑓, 𝑘, 𝑥𝑎,𝑟

𝑓 ��𝑓∈{𝐷𝐷𝐷,𝐸𝐸𝐸,𝐷𝐸𝐷,𝐸𝐸𝐸,𝑅𝑅} ×  

                           ∏ �𝑝�𝑦𝑎,𝑟
𝑓 |𝜓𝜋𝑖

𝑓 ��𝑓∈{𝐶𝐵,𝑀𝑀𝑅,𝐵𝐵𝐸,𝑅𝐸𝑅}                          (10) 

where functions 𝑔 and 𝑝�𝑦𝑎,𝑟
𝑓 |𝜓𝜋𝑖

𝑓  � are defined below: 

𝑔�𝑓, 𝑘, 𝑥𝑎,𝑟
𝑓 � =

⎩
⎪
⎨

⎪
⎧ �𝑛𝑘,𝑃

𝑓 +𝛾𝑘
𝑓�

¬𝑖

�𝑛𝑘+𝛾𝑠�
𝑓+𝛾𝑛�

𝑓�
¬𝑖 

,   𝑖𝑓   𝑥𝑎,𝑟
𝑓 = 1

�𝑛𝑘,𝐴
𝑓 +𝛾¬𝑘

𝑓 �
¬𝑖

�𝑛𝑘+𝛾𝑠�
𝑓+𝛾𝑛�

𝑓�
¬𝑖 

,   𝑖𝑓   𝑥𝑎,𝑟
𝑓 = 0

  

𝑝�𝑦𝑎,𝑟
𝑓 |𝜓𝜋𝑖

𝑓 � ∝ �𝑦𝑎,𝑟
𝑓 �

𝜓𝑖1
𝑓 −1

�1 − 𝑦𝑎,𝑟
𝑓 �

𝜓𝑖2
𝑓 −1

   
The subscript ¬𝑖 denotes counts excluding review 𝑖 = 𝑟𝑎 = (𝑎, 𝑟). 
The Beta shape parameter updates for 𝜓𝑘

𝑓 using method of 
moments are given as follows: 

𝜓𝑘
𝑓 = (𝜓𝑘,1

𝑓 ,𝜓𝑘,2
𝑓 ) = �𝜇𝑘

𝑓 �
𝜇𝑘
𝑓�1−𝜇𝑘

𝑓�

𝜎𝑘
𝑓 − 1� , �1 − 𝜇𝑘

𝑓� �
𝜇𝑘
𝑓�1−𝜇𝑘

𝑓�

𝜎𝑘
𝑓 − 1�� (11) 

where 𝜇𝑘
𝑓 and 𝜎𝑘

𝑓 denote the mean and biased sample variance for 
feature 𝑓 corresponding to class 𝑘. Algorithm 1 details the full 
inference procedure for learning ASM using the above Gibbs 
conditional. Omission of a latter index denoted by [ ] corresponds 
to the row vector spanning over the latter index. 

2.5 Hyperparameter EM 
Algorithm 1 performs inference using uninformed priors (i.e., 
hyperparameters 𝛼 and 𝛾 are set to (1, 1)). Posterior estimates of 
spamicity can be improved if hyperparameters 𝛼 and 𝛾 are 
estimated from the data. This is because the priors for author 
spamicity and latent review behaviors (𝛼 and 𝛾) directly affect 
spam/non-spam cluster assignment to reviews. Algorithm 2 details 
hyperparameter estimation using the single sample Monte Carlo 
EM, which is recommended by [4] as it is both computationally 
efficient and often outperforms multiple-sample Monte Carlo EM. 

Algorithm 2 learns hyperparameters 𝜶 and 𝜸 which maximize 
the model’s complete log-likelihood, L. We employ an L-BFGS 
optimizer [48] for maximization. L-BFGS is a quasi-Newton 
method which does not require the Hessian matrix of second order 
derivatives. It approximates the Hessian using rank-one updates of 
first order gradient. A careful observation of the model’s complete 
log-likelihood reveals that it is a separable function in 𝜶 and 𝜸 
allowing the hyperparameters to be maximized independently. 
Due to space limits, we only provide the final update equations: 

  𝛼𝑘𝑎 = argmax𝛼𝑘𝑎 �
log Γ(𝛼𝑠̂𝑎 + 𝛼𝑛�𝑎) + log Γ�𝛼𝑠̂𝑎 + 𝑛𝑎,𝑠̂� + log Γ�𝛼𝑛�𝑎 + 𝑛𝑎,𝑛��

− log Γ(𝛼𝑠̂𝑎) − log Γ(𝛼𝑛�𝑎) − log Γ(𝑛𝑎 + 𝛼𝑠̂𝑎 + 𝛼𝑛�𝑎)
� (12) 

𝜕ℒ
𝜕𝛼𝑘

𝑎 = Ψ(𝛼𝑠̂𝑎 + 𝛼𝑛�𝑎) + Ψ�𝛼𝑘𝑎 + 𝑛𝑎,𝑘� − Ψ(𝛼𝑘𝑎) −Ψ(𝑛𝑎 + 𝛼𝑠̂𝑎 + 𝛼𝑛�𝑎)  (13) 

𝛾𝑘
𝑓 = argmax𝛾𝑘𝑓 �

log Γ�𝛾𝑠̂
𝑓 + 𝛾𝑛�

𝑓� + log Γ�𝛾𝑠̂
𝑓 + 𝑛𝑘,𝐷

𝑓 � + log Γ�𝛾𝑛�
𝑓 + 𝑛𝑘,𝑅

𝑓 �

− log Γ�𝛾𝑠̂
𝑓� − log Γ�𝛾𝑛�

𝑓� − log Γ�𝑛𝑘 + 𝛾𝑠̂
𝑓 + 𝛾𝑛�

𝑓�
� (14) 

𝜕ℒ

𝜕𝛾𝑠�
𝑓 = Ψ�𝛾𝑠̂

𝑓 + 𝛾𝑛�
𝑓� + Ψ�𝛾𝑠̂

𝑓 + 𝑛𝑠̂,𝐷
𝑓 � − Ψ�𝛾𝑠̂

𝑓� − Ψ�𝑛𝑘 + 𝛾𝑠̂
𝑓 + 𝛾𝑛�

𝑓�  (15) 

𝜕ℒ

𝜕𝛾𝑛�
𝑓 = Ψ�𝛾𝑠̂

𝑓 + 𝛾𝑛�
𝑓� + Ψ�𝛾𝑛�

𝑓 + 𝑛𝑛� ,𝑅
𝑓 � − Ψ�𝛾𝑛�

𝑓� − Ψ�𝑛𝑘 + 𝛾𝑠̂
𝑓 + 𝛾𝑛�

𝑓�  (16) 

where, Ψ(⋅) denotes the digamma function. 

3. EXPERIMENTAL EVALUATION 
We now evaluate the proposed ASM model. We use the 

reviews of manufactured products from Amazon.com. We 
consider only authors/reviewers with at least 3 reviews as authors 
with fewer reviews have few behavior characteristics. For 
reviewers with fewer reviews, the method in [46] can be applied. 
Our final data comprises of 50,704 reviewers, 985,765 reviews, 

and 112,055 products. Below we describe parameter estimation, 
baseline systems, and evaluation results. 

3.1 Learning Observed Feature Thresholds  
As noted in §2.2, the proposed feature constructions contain 

thresholds. The thresholds can either be set heuristically or 
learned using some weak supervision. In this work, we use weak 
supervision to learn the thresholds from the Amazon group spam 
dataset in [29], which provides a small set of labeled spammer 
groups and their reviews. Using this small set of available data is 
not a limitation of our method because the actual spamicty 
modeling of ASM still remains unsupervised as it does not use 
any spamicty labels for authors/reviews in model building. In fact, 
ASM does not have any response variable (e.g., [28, 36]) where 
supervision can be fed using labels. To keep evaluation fair, the 
labeled data in [29] is not used for our evaluation in §3.3.  

Thresholds of burstiness, 𝜏 = 28 days and earliness, 𝛿 = 7 
months (in §2.2) were estimated using greedy hill-climbing search 
maximizing the likelihood of the data in [29]. It is also important 
to note that above thresholds apply to feature constructions in §2.2 
and not specific to ASM. As we will see in §3.2, the same features 
are used by other baseline methods, so improvements of ASM are 
attributed to its process and not the choice of feature thresholds. 

Thresholds for binary discretization of continuous review 
features 𝛽1…4 (in §2.2) are learned using Recursive Minimal 
Entropy Partitioning (RMEP) [7]. The estimated values are as 
follows: 𝛽1 = 0.72, 𝛽2 = 0.63, 𝛽3 = 0.69, 𝛽4 = 2.01. 

3.2 Systems in our Experiments  
Although ASM clusters reviews and estimates author 

spamicities, in this work, our focus is to evaluate the ranking of 
authors based on estimated author spamicities. 

3.2.1 Generative Models: ASM Variants  
ASM with Uninformed Priors (ASM-UP): This is the fully 
unsupervised version of ASM. Uninformed priors are used for 
Beta distributed variables, 𝑠𝑎, 𝜃𝑓, 𝑓 ∈ {𝐷𝑈𝑃, . . ,𝑅𝐴}, i.e., ∀𝑎 ∈
𝐴, 𝛼𝑎 ← (1, 1); 𝛾𝑓 ← (1, 1). This setting is called uninformed 

Algorithm 1 Inference using MCMC Gibbs Sampling 
1. Initialization: 

Randomly assign review clusters, 𝜋𝑟𝑎 = �𝑛�, 𝑧 < 0.5
𝑠̂, 𝑧 ≥ 0.5 ; 𝑧 ~ 𝑈(0, 1) 

2. Iterate 𝒏 =  𝟏 to 𝑵𝒎𝒂𝒙: // 𝑁𝑚𝑎𝑥 = 3000 
For author, 𝑎 =  1 to 𝐴: 

For review 𝑟𝑎 =  1 to 𝑅𝑎: 
i.    Flush cluster assignment, 𝜋𝑟𝑎; 
ii.   Sample 𝜋𝑟𝑎~ 𝑝(𝜋 = 𝑘| … ) using (10); 
iii.  Update 𝑛𝑘,[ ]

𝑓=𝐷𝐷𝐷, 𝑛𝑘,[ ]
𝑓=𝐸𝐸𝐸, 𝑛𝑘,[ ]

𝑓=𝐷𝐸𝐷, 𝑛𝑘,[ ]
𝑓=𝐸𝐸𝐸, 𝑛𝑘,[ ]

𝑓=𝑅𝑅 for 𝑘 ∈ {𝑠̂, 
𝑛�} 

End for 
End for 
If 𝑛 >  𝑁𝐵𝑢𝑟𝑛_𝐼𝑛: // 𝑁𝐵𝑢𝑟𝑛𝐼𝑛 =  250 

For author, 𝑎 =  1 to 𝐴: 
For review 𝑟𝑎 =  1 to 𝑅𝑎: 
  Update 𝜓𝑘

𝑓=𝐶𝐵, 𝜓𝑘
𝑓=𝑀𝑀𝑅, 𝜓𝑘

𝑓=𝐵𝐵𝐸, 𝜓𝑘
𝑓=𝑅𝐸𝑅; 𝑘 ∈ {𝑠̂, 𝑛�} using (11) 

End for 
End for 

End if 
 
Algorithm 2 Single-sample Monte Carlo EM 
1. Initialization: 

Start with uninformed priors: 𝛼𝑎  ← (1, 1); 𝛾𝑓  ← (1, 1) 
2. Repeat: 

i. Run Gibbs sampling to steady state (Algorithm 1) using current 
values of 𝛼𝑎, 𝛾𝑓.  

ii. Optimize 𝛼𝑎 using (12) and 𝛾𝑓 using (14)  
Until convergence of 𝛼𝑎, 𝛾𝑓 



because any value in [0, 1] is equally likely to be assigned to the 
Beta distributed variables and the model doesn’t benefit from any 
domain knowledge based priors. Posterior estimates are drawn 
after 3000 iterations with an initial burn-in of 250 iterations. 
ASM with Informed Priors (ASM-IP): Here we employ 
guidance using some domain knowledge heuristics. Amazon tags 
each review with AVP (Amazon Verified Purchase) if the 
reviewer actually bought the product. Keeping other settings the 
same as ASM-UP, for each author, 𝑎, if none of his reviews have 
AVP tags, then we set 𝑠𝑎~𝐵𝑒𝑡𝑎(5, 1), else we set 
𝑠𝑎~𝐵𝑒𝑡𝑎(1, 5)1. The rationale is that authors who have not 
bought a single product on Amazon are likely to be less reliable 
(hence probably spamming) than those who also review products 
that they have purchased on Amazon (i.e., receiving AVP tags).  
ASM with Hyperparameter Estimation (ASM-HE): This 
setting estimates the hyperparameters  𝛼𝑎, 𝑎 ∈ 𝐴 and 𝛾𝑓, 𝑓 ∈
{𝐷𝑈𝑃,𝐸𝑋𝑇,𝐷𝐸𝑉,𝐸𝑇𝐹,𝑅𝐴} using Algorithm 2 keeping all other 
settings fixed as ASM-UP. 

3.2.2 Unsupervised Rank Aggregation 
ASM estimates reviewer spamicities as scores in [0, 1] (the 

posterior on 𝑠 ~ 𝐵𝑒𝑡𝑎). We can also regard the observed 
behaviors as ranking functions in [0, 1] with extreme values 0 
(respectively 1) indicating non-spamming (spamming) on various 
behavior dimensions. Then, estimating the final spamicites of 
authors becomes unsupervised rank learning using aggregation 
[21]. The problem setting is described as follows. 

Let 𝑥 ∈ 𝑋 denote an item (e.g., author) in the instance space 𝑋 
(e.g., set of authors/reviewers) that need to be ranked relative to 
each other according to some criterion (e.g., spamicity). Let 𝑞 ∈ 𝑄 
denote a query and 𝑟 ∶ 𝑄 × 𝑋 → ℝ denote a ranking function 
whose output governs the rank position of an item, i.e., 𝑟(𝑞, 𝑥) >
𝑟(𝑞, 𝑥′) specifies that 𝑥 is ranked higher than 𝑥′ on query 𝑞 using 
ranking function 𝑟. The notation 𝑟𝑢 ≻𝜖 𝑟𝑣 signifies that the 
ranking function 𝑟𝑢 is better than 𝑟𝑣 with respect to a certain 
evaluation criterion (e.g., NDCG, MAP, L2 loss, etc.). Given a set 
of ranking functions, {𝑟𝑖}𝑖=1𝑀 , rank aggregation learns the optimal 
ranking function, 𝑟𝑂𝑝𝑡 (using a weighted combination of {𝑟𝑖}𝑖=1𝑀 ) 
such that ∀𝑖, 𝑟𝑂𝑝𝑡 ≻𝜖 𝑟𝑖. This problem setting is also called 
unsupervised rank fusion or ensemble ranking [44]. In the 
supervised setting, one usually employs regression to learn the 
weights [41]. In the unsupervised setting, the approach is two-
fold: i) Derive an incidental/surrogate supervision signal. ii) 
Employ a learning algorithm to learn the parameters of 𝑟𝑂𝑝𝑡. In 
[21], the surrogate supervision signal was computed using some 
ranker agreement heuristics and iterative gradient descent was 
used as the learning algorithm.  

In our case of ranking reviewers according to spamicites, we 
have 9 ranking functions {𝑟𝑖}𝑖=1𝑀=9 corresponding to the 9 behavior 
feature dimensions (in §2.2). For each author feature, 𝑓1…4 ∈
{𝐶𝑆,𝑀𝑁𝑅,𝐵𝑆𝑇,𝑅𝐹𝑅}, we directly use the value of the feature as 
the ranking function while for each review feature, 𝑓5…9 ∈
{𝐷𝑈𝑃,𝐸𝑋𝑇,𝐷𝐸𝑉,𝐸𝑇𝐹,𝑅𝐴}, we take the expected value of the 
feature across all reviews of an author to compute the 
corresponding author feature. We then directly use the value of 
each author feature as a ranking function to produce 9 training 
ranks. Given no other knowledge, this is a reasonable approach 
since 𝑓1…9 being anomalous reviewing behaviors are likely to be 
correlated with spammers (the nature of correlation will be 
detailed using posterior density analysis in §4). Thus, the training 
                                                                 
1  A potential non-spammer (NS), 𝑠𝑀𝐵~𝐵𝑒𝑡𝑎(1, 5) has an expected value, 𝐸[𝑠𝑀𝐵] =

1
6
 which is much smaller than a potential spammer (S), 𝑠𝑀𝐵~𝐵𝑒𝑡𝑎(5, 1), with 

expected value,  𝐸[𝑠𝐵] = 5
6
 in the range [0, 1]. 

ranking produced by each feature function is based on a certain 
spamicity dimension. However, none of the training rankings may 
be optimal. We employ learning to rank [27] to learn an optimal 
ranking function by aggregating 9 ranking functions {𝑓𝑖}𝑖=1𝑀=9. 

Learning to rank [27] is a supervised technique that takes a set 
of rankings for training and produces a single optimal aggregated 
ranking function. Each of our training rankings is produced by 
sorting instances (authors) based on values of a feature in {𝑓𝑖}𝑖=1𝑀=9. 
Each instance/author in a training ranking is represented as a 
vector of 𝑓1…9 spam features. We experimented with two popular 
learning to rank algorithms: SVMRank [17] and RankBoost 
[47]. For SVMRank, we used the system in [17]. RankBoost was 
from RankLib2. We use the pair-wise L2 loss metric as the 
optimization criterion for RankBoost and SVMRank. We also 
experimented with RankNet, AdaRank, Coordinate Ascent in 
RankLib, but their results were poorer and hence not included. 

3.2.3 Feature Value Sum and Helpfulness  
For a more comprehensive comparison, we also experiment 

with the following baseline approaches: 
Feature Sum (FSum): As each feature 𝑓1…9 measures spam 
behavior on a specific dimension, an obvious approach is to rank 
the authors in descending order of the sum of all feature values. 
Helpfulness Score (HS): In many review sites (e.g., Amazon), 
readers can provide helpfulness feedback to each review. It is 
reasonable to assume that spam reviews should get less 
helpfulness feedback. HS uses the mean helpfulness score 
(percentage of people who found a review helpful) of reviews of 
each reviewer to rank reviewers in ascending order of the scores. 

Finally, we note that although in ASM spam detection is 
modeled as clustering (§2.3), our key task is to estimate author 
spamcities (the posterior on the latent variable, 𝑠𝑎~𝐵𝑒𝑡𝑎 ∈ [0, 1]) 
for ranking authors according to their spamicities.. Standard 
clustering algorithms (e.g., k-means) are not suitable baselines 
because they only produce clusters, but do not generate a ranking 
of authors. 

3.3 Evaluation Results 
As noted in §1, we are not aware of any gold-standard ground 
truth labeled data for opinion spammers. Hence, this work focuses 
on Bayesian inference in the unsupervised setting. To evaluate the 
author spamicities computed by different systems, we use two 
methods: review classification and human evaluation.  

Running the systems in §3.2 on our data generates a ranking of 
50,704 reviewers. However, human evaluation on all authors is 
clearly impossible. Even for review classification, the number of 
reviews is huge for such a large number of reviewers. We thus 
sample the rank positions 1, 10, 20,…, 50000 (with a sampling 
lag/interval of 10 ranks) to construct the evaluation set, 𝐸 of 5000 
rank positions. Using a fixed sampling lag ensures that 
performance on 𝐸 is a good approximation over the entire range. 
5000 is reasonable for review classification, but for human 
evaluation we need to use a subset (see below). 

3.3.1 Review Classification 
This is a new evaluation method in the unsupervised setting. 

The idea is that if ASM is effective, it must rank the highly likely 
spammers at the top and highly likely non-spammers at the 
bottom. We use a supervised classification of likely spammers and 
likely non-spammers to evaluate this ranking. Instead of 
classifying reviewers, we classify their reviews. 

Prior works in psycholinguistic research (e.g. [32]) have shown 
that faking or lying usually involves more use of personal 

                                                                 
2  http://www.cs.umass.edu/~vdang/ranklib.html 



pronouns and associated verb actions to justify fake statements 
eventually resulting in more use of positive sentiments and 
emotion words. The hypothesis has been attested in [34] where 
text classification using n-gram features have been shown quite 
effective in detecting spam and non-spam reviews. Thus, if our 
classification of reviews based on text features is good, it implies 
that the ASM ranking of reviewers according to spamicites is 
effective because text classification concurs with the abnormal 
behavior spam detection of ASM. The key characteristic of this 
classification is that the text features have not been used in ASM. 
Clearly, using the same set of features will not be meaningful.  

For this set of experiments, we consider the reviews from the 
top k% ranked authors to be in the spam (+) class while reviews 
from the bottom k% of the ranked authors to be in the non-spam 
(–) class. Although the actual percentage of spammers is 
unknown, deception prevalence studies [33, 43] have reported 8-
15% spam rate in online review sites. We thus report results for k 
= 5%, 10%, and 15%. We induce a linear kernel SVM3 using 
SVMLight [16] and report 5-fold cross validation results in Table 2. 
The features are 1-3-grams. We note the following observations: 
1. As k increases, we find a monotonic degradation in review 

classification performance (except HS) which is expected as the 
spamicities of top and bottom authors get closer which makes 
the corresponding review classification harder. 

2. For k = 5%, ASM models performs best on F1 and Accuracy 
metrics. Next in order are FSum, RankBoost, and SVMRank. It 
is interesting that the simple baseline FSum performs quite well 
for k = 5%. The reason is attributed to the fact that the top 
positions are mostly populated by heavy spammers while the 
bottom positions are populated by genuine reviewers and hence 
a naïve un-weighted FSum could capture this phenomenon. 

3. For k = 10, 15%, FSum does not perform so well (SVMRank 
and RankBoost outperform Fsum). This is because for k = 10, 
15%, the ranked positions involve more difficult cases of 
authors/reviewers and a mere sum is not able to balance the 
feature weights as not all features are equally discriminating. 

4. For k = 10%, SVMRank and RankBoost outperform ASM-UP 
and perform close to ASM-IP. ASM-HE still outperforms 

                                                                 
3  Other kernels, e.g., polynomial, rbf, sigmoid didn’t perform so well. Linear kernel 

has been shown effective for text classification by many researchers, e.g., [18]. 

SVMRank and RankBoost by 4% in F1 and 2-3 
% in accuracy. 
5. For k = 15%, ASM variants outperform other 
methods and increase F1 by a margin of 2-10% 
and accuracy by 3-7%. 
6. Performance of HS remains much poorer and 
similar for each k showing that it is not able to 
rank spammers well,  indicating that helpfulness 
is not a good metric for spam detection. In fact, 
helpfulness votes are subject to abuse. 

We note that no significance test is applied 
here to compare performance of different 
methods because each method uses different 
reviews in classification as the output rankings 
from the systems are different. However, we 
experimented with multiple and different 
randomized binning in 5-fold CV which showed 
the same trend as in Table 2. 

To further analyze the nature of spam and 
non-spam reviews by spammers and non-
spammers (based on the rankings of ASM), we 
do an additional experiment. We consider the top 
15% authors ranked by ASM-HE and randomly 
split them into two sets of authors and construct 
two classes of reviews coming from each set of 

authors. Classification on this set of reviews (coming from two 
sets of authors belonging to spammers) yielded 57% accuracy. 
Similarly, classification of reviews by two sets of authors 
belonging to non-spammers (bottom 15% ranked authors of ASM-
HE) yielded 58% accuracy. We tried different random selection of 
authors which also yielded similar accuracies. We note that the 
accuracy is greater than 50% but less than the classification 
accuracy using ASM-HE (Table 2). This shows that the above 
experiment is likely to separate authors and not spam vs. non-
spam reviews. As different authors have differences in writing, 
the accuracy is greater than 50% (random guessing). But it is 
lower than spam and non-spam review classification because 
reviews of both classes come from spammers (or non-spammers) 
and hence noisy. Our result of author classification is supported 
by prior studies in [20] which showed that authorship attribution 
using n-grams is not very effective. It also indirectly shows that a 
lower accuracy obtained by various competitors in Table 2 have 
more noise in ranking authors based on spamicity. 

These results render confidence in the proposed models. It also 
indirectly shows that there are some linguistic differences between 
spam and non-spam reviews. 

3.3.2 Human Evaluation 
Our second evaluation is based on human expert judgment, 

which is commonly used in research on spam, e.g., Web [3, 38], 
email [5], and even blogs and social spam [22]. Human evaluation 
has also been used for opinion spam in prior works [42, 46]. It is 
however important to note that just by reading a single review 
without any context, it is very hard to determine whether a review 
is fake (spam) or not [34]. However, it has been shown in [29] 
that when sufficient context is provided e.g., reviewing patterns, 
ratings, type/brand of products reviewed, posting activity trails, 
etc., human expert evaluation becomes easier. 

For this work, we used 3 domain expert judges: employees at 
Rediff Shopping; eBay.in for evaluating our ranked reviewers 
based on spamicites. The judges had sufficient background in 
reviews of products and sellers due to their nature of their work in 
online shopping. The judges were briefed with many opinion 
spam signals: i) Having zero caveats, and full of empty adjectives. 
ii) Purely glowing praises with no downsides. iii) Suspicious 
brand affinity/aversion, posting trails, etc., from prior findings and 

Table 2 (a) 
k 

(%) 
ASM-UP ASM-IP ASM-HE SVMRank 

P R F1 A P R F1 A P R F1 A P R F1 A 
5 77.7 74.0 75.8 75.5 77.9 74.8 76.3 75.7 79.6 75.1 77.3 77.4 72.1 74.7 73.4 73.1 
10 68.5 62.9 65.6 63.5 72.1 69.5 70.8 72.8 76.8 70.3 73.4 73.4 67.9 70.3 69.1 70.4 
15 62.9 59.9 61.4 60.2 66.8 64.5 65.6 66.1 68.9 67.4 68.1 66.7 57.2 60.9 58.9 59.2 

Table 2 (b) 
k 

(%) 
RankBoost FSum HS 

P R F1 A P R F1 A P R F1 A 
5 74.6 75.1 74.8 74.6 76.1 73.6 74.8 75.2 57.8 61.7 59.7 59.8 
10 68.1 71.6 69.8 71.2 67.3 60.2 63.6 61.4 58.9 60.8 59.8 60.6 
15 58.3 57.8 58.0 59.8 60.2 55.3 57.6 57.2 61.7 58.0 59.8 58.2 

Table 2 (a, b): 5-fold SVM CV for review classification using top k (%) authors’ reviews 
as the spam (+) class and bottom k % authors’ reviews as the non-spam (-) class. P: 
Precision, R:Recall, F1:F1-Score, A:Accuray. 

 ASM-UP ASM-IP ASM-HE SVMRank RankBoost FSum HS 
 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 

J1 31 15 3 36 11 1 43 5 0 36 19 1 37 13 1 34 13 0 6 14 17 
J2 28 14 3 31 6 1 36 6 0 32 16 4 34 8 2 32 11 0 5 12 14 
J3 29 13 2 33 8 0 39 3 0 33 11 2 34 11 0 31 8 0 8 9 10 

Avg. 29.3 14.0 2.67 33.3 8.33 0.67 39.3 4.67 0 33.7 15.3 2.33 35.0 10.7 1 32.3 10.7 0 6.33 11.7 13.7 
κFleiss 0.73 0.68 0.74 0.71 0.72 0.76 0.73 

Table 3: Number of spammers detected in each bucket (B1, B2, B3) by each judge (J1, J2, 
J3) across each method. Last row reports the agreement of judges using Fleiss’ multi-
rater kappa (κFleiss) for each method. 
 
 
 
 



consumer sites [1, 12]. These signals are sensible as they have 
been compiled by consumer domain experts with extensive know-
how on fake reviews. Our judges were also familiar with Amazon 
reviews and given access to additional metadata, e.g., reviewing 
profile, demographic information, etc. Although the judges were 
not provided the proposed features, they were encouraged to use 
their own signals along with the above existing signals and 
reviewer metadata. It is important here to note that providing 
various signals compiled from prior works and domain experts in 
consumer sites [1, 12] to the judges does not introduce a bias but 
enhances judgment. Without any signals, as mentioned above, it is 
very difficult to judge by merely reading reviews. It is also hard 
for anyone to know a large number of signals without extensive 
experience in opinion spam detection. Given a reviewer and his 
reviews, the judges were asked to independently examine his 
entire profile and to provide a label as spammer or non-spammer. 

Due to the large number (5000) of reviewers in the evaluation 
set, 𝐸, it would have taken too much time for human judges to 
assess all the reviewers in 𝐸. We selected the following three 
ranked buckets (B1, B2, B3) for evaluation by our judges: 
B1 (Top 50): Reviewers ranked from 1 to 50 by each system in 𝐸. 
B2 (Middle 50): Reviewers ranked from 2501 to 2550. 
B3 (Bottom 50): Reviewers ranked at bottom 50 ranks in 𝐸. 

This is reasonable because these rank-positions in 𝐸 reflect the 
performance trend on the entire range. Table 3 reports the results 
of each judge (as the count of reviewers labeled as spammers) for 
each bucket across each method. Additionally, we report the 
agreement of judges using Fleiss multi-rater kappa [11] for each 
method in the last row of Table 3. We note the following 
observations: 
1. All 3 judges perform similarly with slight variation (e.g., J1 

seems to be stricter and identifies more spammers in each 
bucket than J3). This shows that the judges have consensus in 
spam judgments. Further, the kappa values being in the range of 
substantial agreement according to scale4 in [23] bolsters 
confidence in the judgments. 

2. For all methods except HS, we find the average number of 
spammers detected by judges decreasing monotonically for 
buckets B1, B2, and B3 which is expected from the ranking 
produced by the algorithms. HS performs poorly (placing more 
spammers in B2, B3 which is undesireable) as also observed in 
§3.3.1. Thus, helpfulness votes aren’t useful for spam detection. 

3. For B1, ASM-HE performs best. On average, it is able to place 
39 spammers in the top 50 rank positions. ASM-IP, RankBoost, 
and SVMRank perform poorer than ASM-HE. ASM-UP does 
not perform well as uninformed priors are weaker. 

4. For B2, the performance order is ASM-HE → ASM-IP → 
RankBoost → FSum → ASM-UP → SVMRank. At this 
bucket, a good method should place fewer spammers as B2 is in 
the middle. This is indeed the case in Table 3. Note that an 
ideal ranking should not place any spammers in the middle 
range as it is very unlikely that 50% of the reviewers are 
spammers. 

5. For the last bucket, B3, we find ASM-HE and FSum performing 
best by not placing any spammers in the bottom ranks. ASM-IP 
does quite well too. Next in performance order are RankBoost 
→ SVMRank → ASM-UP. FSum performed very well in B3 
because its ranking (based on descending order of feature sum 
value) placed authors who ranked very low in all features. As 
the features are all abnormal and indicate suspicious behaviors, 
reviewers attaining very low FSum values are likely to be 

                                                                 
4  No agreement (κ < 0), slight agreement (0 < κ ≤ 0.2), fair agreement (0.2 < κ ≤ 

0.4), moderate agreement (0.4 < κ ≤ 0.6), substantial agreement (0.6 < κ ≤ 0.8), 
and almost perfect agreement for 0.8 < κ ≤ 1.0. 

genuine reviewers which explain the good results of FSum. 
In summary, we can conclude that proposed ASM-HE is 

effective and outperforms other methods and baselines. ASM-IP 
and ASM-UP are slightly inferior which is reasonable as they use 
weaker priors. Learning to rank methods SVMRank and 
RankBoost using proposed behaviors are strong competitors 
showing that the proposed behavior features are effective.  

4. POSTERIOR ANALYSIS 
Apart from generating a ranking of authors based on spamicity 
(𝑠𝑎), ASM also estimates the latent distributions of spam and non-
spam reviews and authors corresponding to each observed author 
and review feature dimension 𝑓 as reflected in the spam vs. non-
spam clusters or classes, i.e., 𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 , 𝜓𝑘∈{𝑠̂,𝑛�}
𝑓  for 𝐾 = 2 clusters, 

𝑘 ∈ {𝑠̂,𝑛�} (Table 1). It is thus interesting to analyze the posterior 
on the learned distributions 𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 , 𝜓𝑘∈{𝑠̂,𝑛�}
𝑓  for each feature 

dimension 𝑓. Although these are model’s estimates of spam and 
non-spam distributions for each anomalous/spamming dimension 
or feature (§2.2), it is still worthwhile to study the estimates to see 
whether they reflect our understanding of spamming behaviors.  

We report the posterior on the latent spam and non-spam 
distributions under each feature 𝑓 (𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 , 𝜓𝑘∈{𝑠̂,𝑛�}
𝑓 ) estimated by 

ASM-HE using MC-EM (Algorithm 2). Due to space constraints, 
we only focus on ASM-HE as it performed best. We plot the 
estimated densities of 𝜃𝑓~𝐵𝑒𝑡𝑎 and 𝜓𝑓~𝐵𝑒𝑡𝑎 for spam and non-
spam clusters in Figure 2. For each estimated latent distribution 
(𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 , 𝜓𝑘∈{𝑠̂,𝑛�}
𝑓 ), we show the density of spam in red (solid) lines 

and non-spam in blue (dotted) lines. Furthermore, the spam and 
non-spam densities being different are shown in their respective 
scales (secondary y-axes, left: blue/dotted for non-spam and right: 
solid/red for spam). The x-axis is the domain of the Beta 
distribution, [0, 1] which is also the range of the corresponding 
observed (author and review) feature where values close to 0 and 
1 show extremes of non-spamming and spamming (author and 
review). Also shown are the expected values for each latent 
behavior for spam (red/dashed lines) and non-spam (blue/dash-
dotted lines) in respective scales and figure captions. We compare 
and explain the estimated trends of each behavior feature (see 
§2.2) across spam and non-spam classes below. 
Content Similarity (𝝍𝑪𝑺): From the densities in Figure 2 (a), we 
see that most spammers have a lot of content similarity in their 
reviews while non-spammers exhibit much less review similarity. 
The expected value of content similarity (using cosine similarity) 
for non-spammers is 0.09, much lower than 0.7 for spammers. 
Maximum Number of Reviews (𝝍𝑴𝑵𝑹): Figure 2 (b) shows the 
difference of densities for this behavior. The density curve for 
non-spammers attaining the peak towards the left of the plot has 
majority of the probability mass concentrated towards the left. 
This shows that non-spammers attain much lower values for 𝑀𝑁𝑅. 
Spammers on the other hand have their masses concentrated at the 
middle with the density curve attaining a peak at a feature value of 
0.34. We recall that this feature, 𝑀𝑁𝑅 is normalized by the largest 
value for this feature (maximum number of reviews in a day) in 
our data which happens to be 21. This imples that a significant 
percentage of spammers have written close to 0.34 × 21 ≈ 7 
reviews in a single day. In expectation, we see that the maximum 
number of reviews in a day for non-spammers is 0.11, i.e., 0.11 × 
21 ≈ 2 reviews while 0.28 × 21 ≈ 5 reviews for spammers. 
Reviewing Burstiness (𝝍𝑩𝑺𝑻): Reviewing busrtiness measures 
the account activity (according to difference between last and first 
post date) within the estimated threshold 𝜏 = 28 days. At one 
extreme, reviewers with overall posting activity more than 28 
days obtain a value of 0 while at other extreme reviewers whose 
last and first post are very close attain value close to 1. From 



Figure 2 (c), we find that density of non-spam class 
attains a peak at the feature value 0, showing a large 
percentage of non-spammers post reviews spanned over 
more than 28 days. This is intuitive as genuine 
reviewers use their accounts from time to time to post 
reviews. For spammers, the density attains a peak at 
feature value 0.89 (i.e., 28×(1-0.89) ≈ 3 days showing 
that a considerable percentage of spmamers never use 
their accounts after 3 days from the first post date. 
Further the expected account acitvity period for 
spammers is 0.75, i.e., 28 × (1-0.75) ≈ 7 days. The 
expected value for non-spammers is 0.01 which is 
negligible showing most non-spammers have account 
activities (by posting reviews) for more than 28 days. 
Ratio of First Reviews (𝝍𝑹𝑭𝑹): As defined earlier, this 
behavior computes the ratio of first reviews to total 
reviews per account (reviewer). First review means that 
a review was posted first for a given product. From 
Figure 2 (d), we see that unlike previous behaviors, the 
separation between spammers and non-spammers is not 
so disticnt. Although in expectation, the estimated 
behavior attains a value of 0.36 for spammers which is 
higher than 0.29 for non-spammers, the density profile 
for non-spammers remains somewhat high. A plausible 
reason for this phenomenon is that there are many 
enthusiastic genuine reviewers who review newly 
launched products. Spammers obtain higher values in 
expectation as reviewing first/early can give them an 
edge as early reviews have more impact [26]. 
Duplicate/Near Dulpicate Reviews on Products 
(𝜽𝑫𝑼𝑷): This review feature measures whether a review 
posted on a product is similar to other reviews on that 
product. This behavior can detect some sockpuppets 
where a person posts similar reviews on a product with 
multiple ids. There can also be multiple similar review 
posts by a single id. In either cases, this behvarior 
would return high values for a review when it is a duplicate/near 
dulpicate to other reviews on that product. From Figure 2 (e), we 
see stark difference of densities of spam and non-spam reviews 
based on this behavior. Spam reviews attain higher values (with 
density peak at extreme right) while non-spam reviews attain very 
low values (with peak density at extreme left). 
Extreme Rating (𝜽𝑬𝑿𝑻): Extreme review rating is a boolean 
review feature. Its corresponding latent behavior, 𝜃𝐸𝐸𝐸 measures 
the extent to which reviews are rated with extreme rating (1 or 5 
star rating) on the scale [0, 1]. Form Figure 2 (f), we see that the 
density of spam reviews is concentrated towards the extreme 
right. Its expected value is 0.86 which implies that about 86% 
percent of spam reviews are rated with either 1 or 5 stars. For non-
spam reviews, we find a somewhat evenly distributed density 
profile because genuine reviewers usually have different rating 
levels. The expected value for non-spam reviews is 0.36, i.e., 
about 36% of non-spam reviews are extreme while the rest 64% is 
distributed across 2, 3, and 4 star ratings according to the density. 
Rating Deviation (𝜽𝑫𝑬𝑽): Recall that rating deviation for a 
review is the extent to which its rating deviates from the average 
rating (general rating consensus) on the product. Its corresponding 
normalized latent behavior is 𝜃𝐷𝐸𝐷 . From the densities in Figure 2 
(g), we find that spam reviews deviate a great deal in rating from 
the general rating consensus. For non-spam reviews we find the 
density peak is attained at the feature value of 0.12 showing that a 
considerable percentage of non-spam reviews don’t deviate very 
much in ratings from the average rating. The expected rating 
deviation is 0.68 for spam reviews which is almost double of the 
expected deviation of 0.34 for non-spam reviews.  

Early Time Frame (𝜽𝑬𝑻𝑭): ETF behavior measures how early 
was a review posted in reference to the product’s launch date. We 
find something very interesting in its corresponding latent 
bevarior, 𝜃𝐸𝐸𝐸 . We recall from §3.1 that the estimated threshold 
for this feature is 𝛿 = 7 months. So, 0 values indicate that reviews 
were posted after 7 months of launch date and values close to 1 
indicate review posts close to the lauch date. From the density plot 
in Figure 2 (h), we find that the mass for non-spam cluster is 
concentrated close to 0 with the expected value of 0.28 showing 
that relatively fewer (28%) of non-spam reviews for a product are 
posted early within 7 months of launch. This is possible as not all 
genuine reviews for a product are posted early within 7 months of 
launch. In fact, the bulk of the genuine reviews get accumulated 
overtime. We note that these statistics are in expectation and not 
for any single product. The 28% of genuine early reviews can be 
attributed to reviewing enthusiasts with keen interests in the 
products. For spam reviews, we find that the density tends to lean 
towards the right, but not extremely concentrated towards the 
right. It attains an expected value of 0.61 showing that about 61% 
spam reviews are posted within 7 months of product lauch date 
while the rest spam reviews accumulate later in the timeline. This 
dovetails with the findings in [26] that spammers usually post 
reviews early enough to cast a bigger impact. 
Rating Abuse (𝜽𝑹𝑨): Rating abuse measures the extent products 
are spammed with multiple ratings. The densities for its 
corresponding latent beharior, 𝜃𝐸𝐸𝐸 are shown in Figure 2 (i). We 
find that a reasonably large percentage of spam reviews (70% in 
expectation) have been instances of imparting rating abuse (i.e., 
among the multiple reviews/ratings for the same product by the 
same reviewer-id). However for non-spam reviews, the expected 

             
a) 𝜓𝐵𝐶𝐵����� = 0.70, 𝜓𝑀𝐶𝐵����� = 0.09     b) 𝜓𝐵𝑀𝑀𝑅������� = 0.28, 𝜓𝑀𝑀𝑀𝑅������� = 0.11       c) 𝜓𝐵𝐵𝐵𝐸������ = 0.75, 𝜓𝑀𝐵𝐵𝐸������ = 0.10 

             
d) 𝜓𝐵𝑅𝐸𝑅������� = 0.36, 𝜓𝑀𝑅𝐸𝑅������� = 0.29     e) 𝜃𝐵𝐷𝐷𝐷������ = 0.42, 𝜃𝑀𝐷𝐷𝐷������ = 0.07       f) 𝜃𝐵𝐸𝐸𝐸������ = 0.86, 𝜃𝑀𝐸𝐸𝐸������ = 0.36 

             
g) 𝜃𝐵𝐷𝐸𝐷������ = 0.68, 𝜃𝑀𝐷𝐸𝐷������ = 0.34     h) 𝜃𝐵𝐸𝐸𝐸������ = 0.61, 𝜃𝑀𝐸𝐸𝐸������ = 0.28       i) 𝜃𝐵𝑅𝑅����� = 0.70, 𝜃𝑀𝑅𝑅����� = 0.13 

Figure 2: Density function (PDF) of estimated latent behvaior variables, 𝝍𝒇~𝑩𝒆𝒕𝒂, 
𝜽𝒇~𝑩𝒆𝒕𝒂 corresponding to each author and review behavior feature, 
𝒇 ∈ {𝑪𝑺,𝑴𝑵𝑹,𝑩𝑺𝑻,𝑹𝑭𝑹}⋃{𝑫𝑼𝑷,𝑬𝑿𝑻,𝑫𝑬𝑽,𝑬𝑻𝑭,𝑹𝑨}. Estimated posterior densities for 
spam (in red/solid) and non-spam (in blue/dotted) are plotted with their respective scales 
(left:blue/dotted for non-spam and right: solid/red for spam). Also shown are the expected 
values for each latent behavior for spam (red/dashed) and non-spam (blue/dash-dot) in 
respective scales. Expected values are also reported in plot captions. 
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value for this behavior is 0.13. Thus, most non-spam reviews (≈ 
100-13 = 87%) are not instances of rating abuse (i.e., are single 
reviews by a reviewer on a product). Again, we note that our 
model estimates 13% of non-spam reviews being instances of 
rating abuse (i.e., multiple ratings on a product by a reviewer) 
which is a small percentage. However, from the non-spam density 
we can say that the feature values for those reviews must be very 
low as the density drops to almost 0 beyond the feature value of 
0.5. Again, this is understandable as sometimes a reviewer might 
review a prodcut more than once when the product experience 
changes from the first review (e.g., a installation fault, not 
knowing the correct method of using, etc.). 

Lastly, we note that although it is interesting to analyze the 
relative discriminative strength of each feature, it is not directly 
possible as we do not have ground-truth spamicity labels for 
reviewers in our data. Instead, the posterior denisity estimates of 
latent bahviors give us some clues to relative feature strengths. 

5. CONCLUSIONS 
This paper proposed a novel and principled method to exploit 

observed reviewing behaviors to detect opinion spammers (fake 
reviewers) in an unsupervised Bayesian inference framework. To 
our knowledge, this is the first such attempt. Existing methods are 
mostly based on heuristics and/or ad-hoc labels for opinion spam 
detection. The proposed model has its basis in the theoretic 
foundation of probabilistic model based clustering. The Bayesian 
framework facilitates characterization of many behavioral 
phenomena of opinion spammers using the estimated latent 
population distributions. It also enables detection and posterior 
density analysis in a single framework. This cannot be done by 
any of the existing methods. The paper also proposed a novel way 
to evaluate the results of unsupervised opinion spam models using 
supervised classification without the need of any manually labeled 
data. Finally, a comprehensive set of experiments based on the 
proposed automated classification evaluation and human expert 
evaluation have been conducted to evaluate the proposed model.  
The results across both evaluation metrics show that the proposed 
model is effective and outperforms strong competitors. 
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