
Spotting Opinion Spammers using Behavioral Footprints
Arjun Mukherjee†, Abhinav Kumar†, Bing Liu†, Junhui Wang†, Meichun Hsu‡, Malu Castellanos‡,

Riddhiman Ghosh‡
†University of Illinois at Chicago, ‡HP Labs

arjun4787@gmail.com, {akumar34, liub, junhui}@uic.edu, {meichun.hsu, malu.castellanos, riddhiman.ghosh}@hp.com

ABSTRACT
Opinionated social media such as product reviews are now widely
used by individuals and organizations for their decision making.
However, due to the reason of profit or fame, people try to game
the system by opinion spamming (e.g., writing fake reviews) to
promote or to demote some target products. In recent years, fake
review detection has attracted significant attention from both the
business and research communities. However, due to the difficulty
of human labeling needed for supervised learning and evaluation,
the problem remains to be highly challenging. This work proposes
a novel angle to the problem by modeling spamicity as latent. An
unsupervised model, called Author Spamicity Model (ASM), is
proposed. It works in the Bayesian setting, which facilitates
modeling spamicity of authors as latent and allows us to exploit
various observed behavioral footprints of reviewers. The intuition
is that opinion spammers have different behavioral distributions
than non-spammers. This creates a distributional divergence
between the latent population distributions of two clusters:
spammers and non-spammers. Model inference results in learning
the population distributions of the two clusters. Several extensions
of ASM are also considered leveraging from different priors.
Experiments on a real-life Amazon review dataset demonstrate the
effectiveness of the proposed models which significantly
outperform the state-of-the-art competitors.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Human Factors; J.4 [Computer
Applications]: Social and Behavioral Sciences

General Terms
Algorithms, Experimentation, Theory

Keywords
Abuse, Opinion Spam, Deceptive and Fake Reviewer Detection

1. INTRODUCTION
Online reviews of products and services are used extensively by

consumers and businesses to make critical purchase, product
design, and customer service decisions. However, due to the
financial incentives associated with positive reviews, imposters
try to game the system by posting fake reviews and giving unfair
ratings to promote or demote target products and services. Such
individuals are called opinion spammers and their activities are

called opinion spamming [14]. The problem of opinion spam is
widespread, and many high-profile cases have been reported in
the news [40]. In fact the menace has become so serious that
Yelp.com has launched a “sting” operation to publicly shame
businesses who buy fake reviews [39].

In recent years, researchers have also studied the problem and
proposed several techniques. However, the problem is still wide
open. Unlike many other forms of spamming, the key difficulty
for solving the opinion spam problem is that it is hard to find
gold-standard data of fake and non-fake reviews for model
building because it is very difficult, if not impossible, to manually
recognize/label fake/non-fake reviews by mere reading [14, 34].

Since it was first studied in [14], various methods have been
proposed to detect opinion spam. One of the main methods is
supervised learning [10, 14, 34]. However, due to the lack of
reliable ground truth label of fake/non-fake review data, existing
works have relied mostly on ad-hoc or pseudo fake/non-fake
labels for model building. In [14], duplicate and near duplicate
reviews were assumed to be fake reviews, which is restrictive and
can be unreliable. In [25], a manually labeled dataset was used,
which also has reliability issues because it has been shown that
the accuracy of human labeling of fake reviews is very poor [34].
In [34], Amazon Mechanical Turk (AMT) was employed to
crowdsource fake hotel reviews by paying (US$1 per review)
anonymous online workers (called Turkers) to write fake reviews
for some hotels. Although these reviews are fake, they do not
reflect the dynamics of fake reviews in a commercial website [31]
as the Turkers do not have the same psychological state of mind
when they write fake reviews as that of fake reviewers in a
commercial website who have real business interests to promote
or to demote. Also, Turkers may not have sufficient domain
knowledge or experience to write convincing fake reviews. Due to
the lack of labeled data, unsupervised methods have also been
proposed for detecting individual [26, 42] and group [29, 30]
spammers, time-series [46] and distributional [9] analysis, and
mining reviewing patterns as unexpected association rules [15]
and reviewing burstiness [8].

In a wide field, a study of bias and controversy of research
paper reviews was reported in [24]. However, research paper
reviews do not usually involve faking. Web spam [3, 38, 45],
email spam [5], blog spam [22], clickbots [19], auction fraud [35],
social networks [13], etc. have also been widely investigated.
However, the dynamics of these forms of spamming are quite
different from those of opinion spamming in reviews.

The above existing works in opinion spam have made good
progresses. However, they are largely based on heuristics and/or
hinge on ad-hoc fake/non-fake labels for model building. No
principled or theoretical models have been proposed so far.

This paper proposes a novel and principled technique to model
and to detect opinion spamming in a Bayesian framework. It
transcends the existing limitations discussed above and presents
an unsupervised method for detecting opinion spam. We take a
fully Bayesian approach and formulate opinion spam detection as
a clustering problem. The Bayesian setting allows us to model
spamicity of reviewers as latent with other observed behavioral

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright © 2013 ACM 978-1-4503-2174-7/13/08…$15.00.

features in our Author Spamicity Model (ASM). Spamicity here
means the degree of being spamming. The key motivation hinges
on the hypothesis that opinion spammers differ from others on
behavioral dimensions [29]. This creates a separation margin
between population distributions of two naturally occurring
clusters: spammers and non-spammers. Inference in ASM results
in learning the distributions of two clusters (or classes) based on a
set of behavioral features. Various extensions of ASM are also
proposed exploiting different priors.

In summary, this paper makes the following contributions:
1. It proposes a novel and principled method to exploit observed

behavioral footprints to detect spammers (fake reviewers) in an
unsupervised Bayesian framework precluding the need of any
manual labels for learning which is both hard [14] and noisy
[34]. A key advantage of employing Bayesian inference is that
the model facilities characterization of various spamming
activities using estimated latent variables and the posterior. It
facilitates both detection and analysis in a single framework
rendering a deep insight into the opinion spam problem. This
cannot be done using existing methods. To our knowledge, this
is the first principled model for solving this problem.

2. It proposes a novel technique to evaluate the results without
using any labeled data. This method uses reviews of the top
ranked and bottom ranked authors produced by the model as
two classes of data to build a supervised classifier. The key
idea is that the classification uses a complete different set of
features than those used in modeling. Thus, if this classifier can
classify accurately, it gives a good confidence that the
unsupervised spamicity model is effective (details in §3.3).

3. It conducts a comprehensive set of experiments to evaluate the
proposed model based on the classification evaluation method
above and also human expert judgment. It also compares with a
set of strong baseline techniques. The results show that the
proposed models outperform the baselines significantly.

2. MODEL
This section details the proposed unsupervised model. We first

discuss the basic intuition (§2.1) and the observed features (§2.2).
In §2.3, we explain the generative process of our model and detail
inference methods in §2.4 and §2.5.

2.1 Model Overview
As discussed above, the proposed model formulates spam

detection as an unsupervised clustering problem in the Bayesian
setting. It belongs to the class of generative models for clustering
[6] based on a set of observed features. It models spamicity, 𝑠𝑎
(degree/tendency of spamming in the range [0, 1]) of an author, 𝑎;
and spam/non-spam label, 𝜋𝑟 of a review, 𝑟 as latent variables. 𝜋𝑟
is essentially the class variable reflecting the cluster memberships
(we have two clusters, 𝐾 = 2, spam and non-spam) for every
review instance. Each author/reviewer (and respectively each
review) has a set of observed features (behavioral clues) emitted
according to the corresponding latent prior class distributions.
Model inference learns the latent population distributions of the
two clusters across various behavioral dimensions, and also the
cluster assignments of reviews in the unsupervised setting based
on the principle of probabilistic model-based clustering [37].

As the generative process of ASM conditions review spam
labels on author spamicites, inference also results in author
spamicity estimates (probability of spamming) facilitating ranking
of authors based on spamicity which is our main focus.

2.2 Observed Features
Here we propose some characteristics of abnormal behaviors

which are likely to be linked with spamming and thus can be
exploited as observed features in our model for learning the spam

and non-spam clusters. We first list the author features and then
the review features. The notations are listed in Table 1.
Author Features: Author features have values in [0, 1]. A value
close to 1 (respectively 0) indicates spamming (non-spamming).
1. Content Similarity (𝑪𝑺): As crafting a new review every time
is time consuming, spammers are likely to copy reviews across
similar products. It is thus useful to capture the content similarity
of reviews (using cosine similarity) of the same author. We chose
the maximum similarity to capture the worst spamming behavior.

𝑓𝐶𝐵(𝑎) = 𝑓1(𝑎) = max𝑟𝑖,𝑟𝑗∈𝑅𝑎,𝑖<𝑗 𝑐𝑜𝑠𝑖𝑛𝑒�𝑟𝑖 , 𝑟𝑗� (1)

2. Maximum Number of Reviews (𝑴𝑵𝑹): Posting many
reviews in a single day also indicates an abnormal behavior. This
feature computes the maximum number of reviews in a day for an
author and normalizes it by the maximum value for our data.

𝑓𝑀𝑀𝑅(𝑎) = 𝑓2(𝑎) = 𝑀𝑎𝑥𝑅𝑒𝑣(𝑎)
max𝑎∈𝐴(𝑀𝑎𝑥𝑅𝑒𝑣(𝑎))

 (2)

3. Reviewing Burstiness (𝑩𝑺𝑻): The study in [29] reports that
opinion spammers are usually not longtime members of a site.
Genuine reviewers, however, use their accounts from time to time
to post reviews. It is thus useful to exploit the activity freshness of
an account in detecting spamming. We define reviewing
burstiness using the activity window (difference of first and last
review posting dates). If reviews are posted over a reasonably
long timeframe, it probably indicates normal activity. However,
when all reviews are posted within a very short burst (𝜏 = 28 days,
estimated in §3.1), it is likely to be a spam infliction.

𝑓𝐵𝐵𝐸(𝑎) = 𝑓3(𝑎) = �
0, 𝐿(𝑎) − 𝐹(𝑎) > 𝜏

1 − 𝐿(𝑎)−𝐸(𝑎)
𝜏

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

4. Ratio of First Reviews (𝑹𝑭𝑹): Spamming early can impact the
initial sales as people rely on the early reviews. Hence, spammers
would try to be among the first reviewers for products as this
enables them to control the sentiment [26]. We compute the ratio
of first reviews to total reviews for each author. First reviews refer
to reviews where the author is the first reviewer for the products.

𝑓𝑅𝐸𝑅(𝑎) = 𝑓4(𝑎) = |{𝑟∈𝑅𝑎 ∶ 𝑟 𝑖𝑠 𝑎𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑣𝑖𝑒𝑤 }|
|𝑅𝑎|

 (4)

Review Features: We have 5 binary review features. Values of 1

Variable/Functions Description
𝑎; 𝐴; 𝑟; 𝑟𝑎 = (𝑎, 𝑟) Author 𝑎; set of all authors; a review; review 𝑟 by author 𝑎

𝑅𝑎, 𝑝(𝑟𝑎) All reviews by 𝑎, 𝑅𝑎 = {𝑟𝑎}; associated product 𝑝 for 𝑟𝑎
𝑅𝑝;𝑅𝑎,𝑝 Reviews on product, 𝑝; Reviews on product 𝑝 by author 𝑎

⋆ (𝑟𝑎 ,𝑝(𝑟𝑎)) The ⋆ rating of 𝑟𝑎 on product 𝑝(𝑟𝑎) on the 5-⋆ rating scale
𝑀𝑎𝑥𝑅𝑒𝑣(𝑎) Maximum # of reviews posted in a day by an author, 𝑎
𝐹(𝑎); 𝐿(𝑎) First posting date of 𝑎; last posting date of 𝑎
𝐿(𝑎,𝑝); 𝐴(𝑝) Last review posting date by 𝑎 on 𝑝; product 𝑝’s launch date
𝑘 ∈ {𝑠̂, 𝑛�} Class variable 𝑘 for Spam/Non-spam class (label)

𝑠𝑎~𝐵𝑒𝑡𝑎(𝛼𝑠̂ ,𝛼𝑛�) Spamicity of an author, 𝑎, , 𝑠𝑎 ∈ [0, 1]
𝛼𝑘∈{𝑠̂,𝑛�}
𝑎 Beta shape parameters (priors) for 𝑠𝑎 for each author 𝑎

𝜋𝑟𝑎~𝐵𝑒𝑟𝑛(𝑠𝑎) Spam/Non-spam class label for review 𝑟𝑎, 𝜋𝑟𝑎 ∈ {𝑠̂,𝑛�}
𝜃𝑘∈{𝑠̂,𝑛�}
𝑓 ~𝐵𝑒𝑡𝑎�𝛾𝑠̂

𝑓, 𝛾𝑛�
𝑓� Per class prob. of exhibiting the review behavior, 𝑓5…9

𝛾𝑘∈{𝑠̂,𝑛�}
𝑓 Beta shape parameters of 𝜃𝑓 for each review behavior, 𝑓

𝜓𝑘∈{𝑠̂,𝑛�}
𝑓 ~𝐵𝑒𝑡𝑎 Per class probability of exhibiting the author behavior, 𝑓1…4
𝜓𝑘,1
𝑓 ; 𝜓𝑘,2

𝑓 Beta shape parameters of class 𝑘 for behavior 𝑓
𝑥𝑎,𝑟
𝑓 ~𝐵𝑒𝑟𝑛�𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 � Observed review feature, 𝑓 ∈ {𝐷𝑈𝑃,𝐸𝑋𝑇,𝐷𝐸𝑉,𝐸𝑇𝐹,𝑅𝐴}
𝑦𝑎,𝑟
𝑓 ~𝜓𝑘∈{𝑠̂,𝑛�}

𝑓 Observed author features 𝑓 ∈ {𝐶𝑆,𝑀𝑁𝑅,𝐵𝑆𝑇,𝑅𝐹𝑅}
𝑛𝑎,𝑠̂; 𝑛𝑎,𝑛� # of reviews of author 𝑎 assigned to spam; non-spam class

𝑛𝑘,𝐷
𝑓 ; 𝑛𝑘,𝑅

𝑓 # of reviews in class 𝑘 ∈ {𝑠̂,𝑛�} which have review feature f
(P)resent (𝑓 attains value 1); (A)bsent (𝑓 attains value 0)

𝑛𝑎;𝑛𝑘∈{𝑠̂,𝑛�} # of reviews by author 𝑎; # of reviews in class 𝑘
𝐾 Total number of clusters in the model

Table 1: List of notations

indicate spamming while 0 non-spamming.
5. Duplicate/Near Duplicate Reviews (𝑫𝑼𝑷): Spammers often
post multiple reviews which are duplicate/near-duplicate versions
of previous reviews on the same product to boost ratings [26]. To
capture this phenomenon, we compute the review feature (𝑓𝐷𝐷𝐷)
duplicate reviews on the same product as follows:

𝑓𝐷𝐷𝐷(𝑟𝑎) = 𝑓5(𝑎, 𝑟) = �
1,∃𝑟 ∈ 𝑅𝑝=𝑝(𝑟𝑎) 𝑐𝑜𝑠𝑖𝑛𝑒(𝑟𝑎, 𝑟) > 𝛽1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

𝑓𝐷𝐷𝐷 attains a value of 1 for a review 𝑟𝑎 by an author 𝑎 on product
𝑝, if it is similar (using cosine similarity based on some threshold,
𝛽1= 0.7 (say)) to any other review on 𝑝. 𝛽1 is estimated in §3.1.
6. Extreme Rating (𝑬𝑿𝑻): On a 5-star (⋆) rating scale, it reflects
the intuition that to inflict spam, spammers are likely to give
extreme ratings (1⋆ or 5⋆) in order to demote/promote products.

𝑓𝐸𝐸𝐸(𝑟𝑎) = 𝑓6(𝑎, 𝑟) = �
1,⋆ (𝑟𝑎 ,𝑝(𝑟𝑎)) ∈ {1,5}

0,⋆ (𝑟𝑎 ,𝑝(𝑟𝑎)) ∈ {2,3, 4} (6)

7. Rating Deviation (𝑫𝑬𝑽): Review spamming usually involves
wrong projection either in the positive or negative light so as to
alter the true sentiment on products. This hints that ratings of
spammers often deviate from the average ratings given by other
reviewers. This feature attains the value of 1 if the rating deviation
of a review exceeds some threshold 𝛽2. 𝛽2 is estimated in §3.1.
We normalize by the maximum deviation, 4 on a 5-star scale.

𝑓𝐷𝐸𝐷(𝑟𝑎) = 𝑓7(𝑎, 𝑟) = �1,
� ⋆�𝑟𝑎 , 𝑝(𝑟𝑎)�−𝐸�⋆�𝑟𝑎′≠𝑎 , 𝑝(𝑟𝑎)�� �

4
> 𝛽2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

The expectation is taken over all reviews on product 𝑝 = 𝑝(𝑟𝑎) by
other authors, 𝑎′ ≠ 𝑎, to get the average rating on 𝑝.
8. Early Time Frame (𝑬𝑻𝑭): [26] argues that spammers often
review early to inflict spam as the early reviews can greatly
impact people’s sentiment on a product. To capture this spamming
characteristic, we propose the following feature:

𝑓𝐸𝐸𝐸(𝑟𝑎) = 𝑓8(𝑎, 𝑟) = �1,𝐸𝑇𝐹(𝑟𝑎,𝑝(𝑟𝑎)) > 𝛽3
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐸𝑇𝐹(𝑟𝑎,𝑝) = �
0, 𝐿(𝑎, 𝑝) − 𝐴(𝑝) > 𝛿

1 − 𝐿(𝑎,𝑝)−𝑅(𝑝)
𝛿

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8)

𝐸𝑇𝐹(𝑟𝑎,𝑝) captures how early an author 𝑎 reviewed the product 𝑝.
𝛿 = 7 months is a threshold for denoting earliness (estimated in
§3.1). The definition says that if the latest review is beyond 7
months of product launch, it is no longer considered to be early.
At the other extreme, if reviews are posted just after launch this
feature attains a value of 1. 𝛽3 is the corresponding threshold
indicating spamming and is estimated in §3.1.
9. Rating Abuse (𝑹𝑨): This feature captures the abuse caused by
multiple ratings on the same product. Multiple ratings/reviews on
the same product are unusual. Although this feature is similar to
𝐷𝑈𝑃, it focuses on the rating dimension rather than content.
Rating abuse, 𝑅𝐴(𝑎,𝑝) is defined by the similarity of ratings of an
author, 𝑎 towards a product, 𝑝 across multiple reviews by the
author weighted by the total number of reviews on the product.

𝑓𝑅𝑅(𝑟𝑎) = 𝑓9(𝑎, 𝑟) = �1,𝑅𝐴(𝑎,𝑝(𝑟𝑎)) > 𝛽4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ;

𝑅𝐴(𝑎,𝑝) = |𝑅𝑎,𝑝| �1 − 1
4
�max𝑟∈𝑅𝑎,𝑝(⋆ (𝑟, 𝑝)) − min𝑟∈𝑅𝑎,𝑝(⋆ (𝑟, 𝑝))�� (9)

The similarity of multiple star rating is computed using the
difference between maximum and minimum star rating on a 5-star
scale to capture consistent high/low ratings. The normalization
constant is 4 as it is the maximum possible rating difference. For
multiple ratings in genuine cases where ratings change (e.g., after
correct use), the feature attains lower values. 𝛽4 is the rating abuse
threshold indicating spamming and is estimated in §3.1.

2.3 Process
In ASM, spam detection is influenced by review and author

features. Normalized continuous author features in [0, 1] are

modeled as following a Beta distribution (𝑦𝑎,𝑟
𝑓 ~ 𝜓𝑘∈{𝑠̂,𝑛�}

𝑓) (Table
1). This enables ASM to capture more fine grained dependencies
of author’s behaviors with spamming. However, review features
being more objective, we found that they are better captured when
modeled as binary variables being emitted from a Bernoulli
distribution (𝑥𝑎,𝑟

𝑓 ~𝐵𝑒𝑟𝑛 �𝜃𝑘∈{𝑠̂,𝑛�}
𝑓 � (Table 1). 𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 for each review
feature 𝑓 ∈ {𝐷𝑈𝑃,𝐸𝑋𝑇,𝐷𝐸𝑉,𝐸𝑇𝐹,𝑅𝐴} and 𝜓𝑘∈{𝑠̂,𝑛�}

𝑓 for each author
feature 𝑓 ∈ {𝐶𝑆,𝑀𝑁𝑅,𝐵𝑆𝑇,𝑅𝐹𝑅} denote the per class/cluster (spam vs.
non-spam) probability of emitting feature 𝑓.

Latent variables 𝑠𝑎 and 𝜋𝑟 denote the spamicity of an author, 𝑎
and the (spam/non-spam) class of each review, 𝑟. The objective of
ASM is to learn the latent behavior distributions for spam and
non-spam clusters (𝐾 = 2) along with spamicites of authors from
the observed features. We now detail its generative process.
1. For each class/cluster, 𝑘 ∈ {𝑠̂,𝑛�}:

Draw 𝜃𝑘
𝑓∈{𝐷𝐷𝐷,…,𝑅𝑅}~𝐵𝑒𝑡𝑎(𝛾𝑓)

2. For each (author), 𝑎 ∈ {1 …𝐴}:
i. Draw spamicity, 𝑠𝑎~𝐵𝑒𝑡𝑎(𝛼𝑎);
ii. For each review, 𝑟𝑎 ∈ {1 …𝑅𝑎}:

a. Draw its class, 𝜋𝑟𝑎~𝐵𝑒𝑟𝑛(𝑠𝑎)
b. Emit review features 𝑓 ∈ {𝐷𝑈𝑃, … ,𝑅𝐴}:
𝑥𝑟𝑎
𝑓 ~ 𝐵𝑒𝑟𝑛 �𝜃𝜋𝑟𝑎

𝑓 � ;
c. Emit author features 𝑓 ∈ {𝐶𝑆, . . ,𝑅𝐹𝑅}:
𝑦𝑟𝑎
𝑓 ~ 𝜓𝜋𝑟𝑎

𝑓 ;

We note that the observed author features are placed in the
review plate (Figure 1). This is because each author behavior can
be thought of as percolating through reviews of that author and
emitted across each review to some extent. Doing this renders two
key advantages: i) It permits us to exploit a larger co-occurrence
domain. ii) It paves the way for a simpler sampling distribution
providing for faster inference.

2.4 Inference
We employ approximate posterior inference with Monte Carlo

Gibbs sampling, and use Rao-Blackwellization [2] to reduce
sampling variance by collapsing on the latent variables 𝑠 and 𝜃𝑓.
As observed author features obtaining values in [0, 1] are modeled
as continuous Beta distributions, sparsity is considerably reduced
as far as parameter estimation of 𝜓𝑓∈{𝐶𝐵,…𝑅𝐸𝑅} is concerned. Hence,
to ensure speed, we estimate 𝜓𝑘

𝑓using the method of moments,

Figure 1: Plate Notation of ASM.

K
𝜃𝐷𝐷𝐷 𝜃𝑅𝑅 𝜃𝐸𝐸𝐸 𝜃𝐷𝐷𝐷 𝜃𝐸𝐸𝐸

 𝑥𝐸𝐸𝐸 𝑥𝐸𝐸𝐸 𝑥𝐷𝐷𝐷

𝑥𝐷𝐷𝐷

𝑥𝑅𝑅

A
Ra

𝑠

 𝑦𝑀𝑀𝑀

 𝑦𝐵𝐵𝐵

 𝑦𝑅𝑅𝑅

𝜋 𝜓𝑀𝑀𝑀

 𝜓𝐶𝐶

𝜓𝐵𝐵𝐵
𝜓𝑅𝑅𝑅

K

𝛼

𝛾𝑅𝑅 𝛾𝐷𝐷𝐷 𝛾𝐸𝐸𝐸 𝛾𝐷𝐷𝐷 𝛾𝐸𝐸𝐸

 𝑦𝐶𝐶

once per sweep of Gibbs sampling. The Gibbs sampler is given
by:

𝑝(𝜋𝑖 = 𝑘|𝝅¬𝒊 …) ∝
𝑛𝑎,𝑘¬𝑖+𝛼𝑘

𝑎

�𝑛𝑎+𝛼𝑠�
𝑎+𝛼𝑛�

𝑎�¬𝑖
× ∏ �𝑔�𝑓, 𝑘, 𝑥𝑎,𝑟

𝑓 ��𝑓∈{𝐷𝐷𝐷,𝐸𝐸𝐸,𝐷𝐸𝐷,𝐸𝐸𝐸,𝑅𝑅} ×

 ∏ �𝑝�𝑦𝑎,𝑟
𝑓 |𝜓𝜋𝑖

𝑓 ��𝑓∈{𝐶𝐵,𝑀𝑀𝑅,𝐵𝐵𝐸,𝑅𝐸𝑅} (10)

where functions 𝑔 and 𝑝�𝑦𝑎,𝑟
𝑓 |𝜓𝜋𝑖

𝑓 � are defined below:

𝑔�𝑓, 𝑘, 𝑥𝑎,𝑟
𝑓 � =

⎩
⎪
⎨

⎪
⎧ �𝑛𝑘,𝑃

𝑓 +𝛾𝑘
𝑓�

¬𝑖

�𝑛𝑘+𝛾𝑠�
𝑓+𝛾𝑛�

𝑓�
¬𝑖

, 𝑖𝑓 𝑥𝑎,𝑟
𝑓 = 1

�𝑛𝑘,𝐴
𝑓 +𝛾¬𝑘

𝑓 �
¬𝑖

�𝑛𝑘+𝛾𝑠�
𝑓+𝛾𝑛�

𝑓�
¬𝑖

, 𝑖𝑓 𝑥𝑎,𝑟
𝑓 = 0

𝑝�𝑦𝑎,𝑟
𝑓 |𝜓𝜋𝑖

𝑓 � ∝ �𝑦𝑎,𝑟
𝑓 �

𝜓𝑖1
𝑓 −1

�1 − 𝑦𝑎,𝑟
𝑓 �

𝜓𝑖2
𝑓 −1

The subscript ¬𝑖 denotes counts excluding review 𝑖 = 𝑟𝑎 = (𝑎, 𝑟).
The Beta shape parameter updates for 𝜓𝑘

𝑓 using method of
moments are given as follows:

𝜓𝑘
𝑓 = (𝜓𝑘,1

𝑓 ,𝜓𝑘,2
𝑓) = �𝜇𝑘

𝑓 �
𝜇𝑘
𝑓�1−𝜇𝑘

𝑓�

𝜎𝑘
𝑓 − 1� , �1 − 𝜇𝑘

𝑓� �
𝜇𝑘
𝑓�1−𝜇𝑘

𝑓�

𝜎𝑘
𝑓 − 1�� (11)

where 𝜇𝑘
𝑓 and 𝜎𝑘

𝑓 denote the mean and biased sample variance for
feature 𝑓 corresponding to class 𝑘. Algorithm 1 details the full
inference procedure for learning ASM using the above Gibbs
conditional. Omission of a latter index denoted by [] corresponds
to the row vector spanning over the latter index.

2.5 Hyperparameter EM
Algorithm 1 performs inference using uninformed priors (i.e.,
hyperparameters 𝛼 and 𝛾 are set to (1, 1)). Posterior estimates of
spamicity can be improved if hyperparameters 𝛼 and 𝛾 are
estimated from the data. This is because the priors for author
spamicity and latent review behaviors (𝛼 and 𝛾) directly affect
spam/non-spam cluster assignment to reviews. Algorithm 2 details
hyperparameter estimation using the single sample Monte Carlo
EM, which is recommended by [4] as it is both computationally
efficient and often outperforms multiple-sample Monte Carlo EM.

Algorithm 2 learns hyperparameters 𝜶 and 𝜸 which maximize
the model’s complete log-likelihood, L. We employ an L-BFGS
optimizer [48] for maximization. L-BFGS is a quasi-Newton
method which does not require the Hessian matrix of second order
derivatives. It approximates the Hessian using rank-one updates of
first order gradient. A careful observation of the model’s complete
log-likelihood reveals that it is a separable function in 𝜶 and 𝜸
allowing the hyperparameters to be maximized independently.
Due to space limits, we only provide the final update equations:

 𝛼𝑘𝑎 = argmax𝛼𝑘𝑎 �
log Γ(𝛼𝑠̂𝑎 + 𝛼𝑛�𝑎) + log Γ�𝛼𝑠̂𝑎 + 𝑛𝑎,𝑠̂� + log Γ�𝛼𝑛�𝑎 + 𝑛𝑎,𝑛��

− log Γ(𝛼𝑠̂𝑎) − log Γ(𝛼𝑛�𝑎) − log Γ(𝑛𝑎 + 𝛼𝑠̂𝑎 + 𝛼𝑛�𝑎)
� (12)

𝜕ℒ
𝜕𝛼𝑘

𝑎 = Ψ(𝛼𝑠̂𝑎 + 𝛼𝑛�𝑎) + Ψ�𝛼𝑘𝑎 + 𝑛𝑎,𝑘� − Ψ(𝛼𝑘𝑎) −Ψ(𝑛𝑎 + 𝛼𝑠̂𝑎 + 𝛼𝑛�𝑎) (13)

𝛾𝑘
𝑓 = argmax𝛾𝑘𝑓 �

log Γ�𝛾𝑠̂
𝑓 + 𝛾𝑛�

𝑓� + log Γ�𝛾𝑠̂
𝑓 + 𝑛𝑘,𝐷

𝑓 � + log Γ�𝛾𝑛�
𝑓 + 𝑛𝑘,𝑅

𝑓 �

− log Γ�𝛾𝑠̂
𝑓� − log Γ�𝛾𝑛�

𝑓� − log Γ�𝑛𝑘 + 𝛾𝑠̂
𝑓 + 𝛾𝑛�

𝑓�
� (14)

𝜕ℒ

𝜕𝛾𝑠�
𝑓 = Ψ�𝛾𝑠̂

𝑓 + 𝛾𝑛�
𝑓� + Ψ�𝛾𝑠̂

𝑓 + 𝑛𝑠̂,𝐷
𝑓 � − Ψ�𝛾𝑠̂

𝑓� − Ψ�𝑛𝑘 + 𝛾𝑠̂
𝑓 + 𝛾𝑛�

𝑓� (15)

𝜕ℒ

𝜕𝛾𝑛�
𝑓 = Ψ�𝛾𝑠̂

𝑓 + 𝛾𝑛�
𝑓� + Ψ�𝛾𝑛�

𝑓 + 𝑛𝑛� ,𝑅
𝑓 � − Ψ�𝛾𝑛�

𝑓� − Ψ�𝑛𝑘 + 𝛾𝑠̂
𝑓 + 𝛾𝑛�

𝑓� (16)

where, Ψ(⋅) denotes the digamma function.

3. EXPERIMENTAL EVALUATION
We now evaluate the proposed ASM model. We use the

reviews of manufactured products from Amazon.com. We
consider only authors/reviewers with at least 3 reviews as authors
with fewer reviews have few behavior characteristics. For
reviewers with fewer reviews, the method in [46] can be applied.
Our final data comprises of 50,704 reviewers, 985,765 reviews,

and 112,055 products. Below we describe parameter estimation,
baseline systems, and evaluation results.

3.1 Learning Observed Feature Thresholds
As noted in §2.2, the proposed feature constructions contain

thresholds. The thresholds can either be set heuristically or
learned using some weak supervision. In this work, we use weak
supervision to learn the thresholds from the Amazon group spam
dataset in [29], which provides a small set of labeled spammer
groups and their reviews. Using this small set of available data is
not a limitation of our method because the actual spamicty
modeling of ASM still remains unsupervised as it does not use
any spamicty labels for authors/reviews in model building. In fact,
ASM does not have any response variable (e.g., [28, 36]) where
supervision can be fed using labels. To keep evaluation fair, the
labeled data in [29] is not used for our evaluation in §3.3.

Thresholds of burstiness, 𝜏 = 28 days and earliness, 𝛿 = 7
months (in §2.2) were estimated using greedy hill-climbing search
maximizing the likelihood of the data in [29]. It is also important
to note that above thresholds apply to feature constructions in §2.2
and not specific to ASM. As we will see in §3.2, the same features
are used by other baseline methods, so improvements of ASM are
attributed to its process and not the choice of feature thresholds.

Thresholds for binary discretization of continuous review
features 𝛽1…4 (in §2.2) are learned using Recursive Minimal
Entropy Partitioning (RMEP) [7]. The estimated values are as
follows: 𝛽1 = 0.72, 𝛽2 = 0.63, 𝛽3 = 0.69, 𝛽4 = 2.01.

3.2 Systems in our Experiments
Although ASM clusters reviews and estimates author

spamicities, in this work, our focus is to evaluate the ranking of
authors based on estimated author spamicities.

3.2.1 Generative Models: ASM Variants
ASM with Uninformed Priors (ASM-UP): This is the fully
unsupervised version of ASM. Uninformed priors are used for
Beta distributed variables, 𝑠𝑎, 𝜃𝑓, 𝑓 ∈ {𝐷𝑈𝑃, . . ,𝑅𝐴}, i.e., ∀𝑎 ∈
𝐴, 𝛼𝑎 ← (1, 1); 𝛾𝑓 ← (1, 1). This setting is called uninformed

Algorithm 1 Inference using MCMC Gibbs Sampling
1. Initialization:

Randomly assign review clusters, 𝜋𝑟𝑎 = �𝑛�, 𝑧 < 0.5
𝑠̂, 𝑧 ≥ 0.5 ; 𝑧 ~ 𝑈(0, 1)

2. Iterate 𝒏 = 𝟏 to 𝑵𝒎𝒂𝒙: // 𝑁𝑚𝑎𝑥 = 3000
For author, 𝑎 = 1 to 𝐴:

For review 𝑟𝑎 = 1 to 𝑅𝑎:
i. Flush cluster assignment, 𝜋𝑟𝑎;
ii. Sample 𝜋𝑟𝑎~ 𝑝(𝜋 = 𝑘| …) using (10);
iii. Update 𝑛𝑘,[]

𝑓=𝐷𝐷𝐷, 𝑛𝑘,[]
𝑓=𝐸𝐸𝐸, 𝑛𝑘,[]

𝑓=𝐷𝐸𝐷, 𝑛𝑘,[]
𝑓=𝐸𝐸𝐸, 𝑛𝑘,[]

𝑓=𝑅𝑅 for 𝑘 ∈ {𝑠̂,
𝑛�}

End for
End for
If 𝑛 > 𝑁𝐵𝑢𝑟𝑛_𝐼𝑛: // 𝑁𝐵𝑢𝑟𝑛𝐼𝑛 = 250

For author, 𝑎 = 1 to 𝐴:
For review 𝑟𝑎 = 1 to 𝑅𝑎:
 Update 𝜓𝑘

𝑓=𝐶𝐵, 𝜓𝑘
𝑓=𝑀𝑀𝑅, 𝜓𝑘

𝑓=𝐵𝐵𝐸, 𝜓𝑘
𝑓=𝑅𝐸𝑅; 𝑘 ∈ {𝑠̂, 𝑛�} using (11)

End for
End for

End if

Algorithm 2 Single-sample Monte Carlo EM
1. Initialization:

Start with uninformed priors: 𝛼𝑎 ← (1, 1); 𝛾𝑓 ← (1, 1)
2. Repeat:

i. Run Gibbs sampling to steady state (Algorithm 1) using current
values of 𝛼𝑎, 𝛾𝑓.

ii. Optimize 𝛼𝑎 using (12) and 𝛾𝑓 using (14)
Until convergence of 𝛼𝑎, 𝛾𝑓

because any value in [0, 1] is equally likely to be assigned to the
Beta distributed variables and the model doesn’t benefit from any
domain knowledge based priors. Posterior estimates are drawn
after 3000 iterations with an initial burn-in of 250 iterations.
ASM with Informed Priors (ASM-IP): Here we employ
guidance using some domain knowledge heuristics. Amazon tags
each review with AVP (Amazon Verified Purchase) if the
reviewer actually bought the product. Keeping other settings the
same as ASM-UP, for each author, 𝑎, if none of his reviews have
AVP tags, then we set 𝑠𝑎~𝐵𝑒𝑡𝑎(5, 1), else we set
𝑠𝑎~𝐵𝑒𝑡𝑎(1, 5)1. The rationale is that authors who have not
bought a single product on Amazon are likely to be less reliable
(hence probably spamming) than those who also review products
that they have purchased on Amazon (i.e., receiving AVP tags).
ASM with Hyperparameter Estimation (ASM-HE): This
setting estimates the hyperparameters 𝛼𝑎, 𝑎 ∈ 𝐴 and 𝛾𝑓, 𝑓 ∈
{𝐷𝑈𝑃,𝐸𝑋𝑇,𝐷𝐸𝑉,𝐸𝑇𝐹,𝑅𝐴} using Algorithm 2 keeping all other
settings fixed as ASM-UP.

3.2.2 Unsupervised Rank Aggregation
ASM estimates reviewer spamicities as scores in [0, 1] (the

posterior on 𝑠 ~ 𝐵𝑒𝑡𝑎). We can also regard the observed
behaviors as ranking functions in [0, 1] with extreme values 0
(respectively 1) indicating non-spamming (spamming) on various
behavior dimensions. Then, estimating the final spamicites of
authors becomes unsupervised rank learning using aggregation
[21]. The problem setting is described as follows.

Let 𝑥 ∈ 𝑋 denote an item (e.g., author) in the instance space 𝑋
(e.g., set of authors/reviewers) that need to be ranked relative to
each other according to some criterion (e.g., spamicity). Let 𝑞 ∈ 𝑄
denote a query and 𝑟 ∶ 𝑄 × 𝑋 → ℝ denote a ranking function
whose output governs the rank position of an item, i.e., 𝑟(𝑞, 𝑥) >
𝑟(𝑞, 𝑥′) specifies that 𝑥 is ranked higher than 𝑥′ on query 𝑞 using
ranking function 𝑟. The notation 𝑟𝑢 ≻𝜖 𝑟𝑣 signifies that the
ranking function 𝑟𝑢 is better than 𝑟𝑣 with respect to a certain
evaluation criterion (e.g., NDCG, MAP, L2 loss, etc.). Given a set
of ranking functions, {𝑟𝑖}𝑖=1𝑀 , rank aggregation learns the optimal
ranking function, 𝑟𝑂𝑝𝑡 (using a weighted combination of {𝑟𝑖}𝑖=1𝑀)
such that ∀𝑖, 𝑟𝑂𝑝𝑡 ≻𝜖 𝑟𝑖. This problem setting is also called
unsupervised rank fusion or ensemble ranking [44]. In the
supervised setting, one usually employs regression to learn the
weights [41]. In the unsupervised setting, the approach is two-
fold: i) Derive an incidental/surrogate supervision signal. ii)
Employ a learning algorithm to learn the parameters of 𝑟𝑂𝑝𝑡. In
[21], the surrogate supervision signal was computed using some
ranker agreement heuristics and iterative gradient descent was
used as the learning algorithm.

In our case of ranking reviewers according to spamicites, we
have 9 ranking functions {𝑟𝑖}𝑖=1𝑀=9 corresponding to the 9 behavior
feature dimensions (in §2.2). For each author feature, 𝑓1…4 ∈
{𝐶𝑆,𝑀𝑁𝑅,𝐵𝑆𝑇,𝑅𝐹𝑅}, we directly use the value of the feature as
the ranking function while for each review feature, 𝑓5…9 ∈
{𝐷𝑈𝑃,𝐸𝑋𝑇,𝐷𝐸𝑉,𝐸𝑇𝐹,𝑅𝐴}, we take the expected value of the
feature across all reviews of an author to compute the
corresponding author feature. We then directly use the value of
each author feature as a ranking function to produce 9 training
ranks. Given no other knowledge, this is a reasonable approach
since 𝑓1…9 being anomalous reviewing behaviors are likely to be
correlated with spammers (the nature of correlation will be
detailed using posterior density analysis in §4). Thus, the training

1 A potential non-spammer (NS), 𝑠𝑀𝐵~𝐵𝑒𝑡𝑎(1, 5) has an expected value, 𝐸[𝑠𝑀𝐵] =

1
6
 which is much smaller than a potential spammer (S), 𝑠𝑀𝐵~𝐵𝑒𝑡𝑎(5, 1), with

expected value, 𝐸[𝑠𝐵] = 5
6
 in the range [0, 1].

ranking produced by each feature function is based on a certain
spamicity dimension. However, none of the training rankings may
be optimal. We employ learning to rank [27] to learn an optimal
ranking function by aggregating 9 ranking functions {𝑓𝑖}𝑖=1𝑀=9.

Learning to rank [27] is a supervised technique that takes a set
of rankings for training and produces a single optimal aggregated
ranking function. Each of our training rankings is produced by
sorting instances (authors) based on values of a feature in {𝑓𝑖}𝑖=1𝑀=9.
Each instance/author in a training ranking is represented as a
vector of 𝑓1…9 spam features. We experimented with two popular
learning to rank algorithms: SVMRank [17] and RankBoost
[47]. For SVMRank, we used the system in [17]. RankBoost was
from RankLib2. We use the pair-wise L2 loss metric as the
optimization criterion for RankBoost and SVMRank. We also
experimented with RankNet, AdaRank, Coordinate Ascent in
RankLib, but their results were poorer and hence not included.

3.2.3 Feature Value Sum and Helpfulness
For a more comprehensive comparison, we also experiment

with the following baseline approaches:
Feature Sum (FSum): As each feature 𝑓1…9 measures spam
behavior on a specific dimension, an obvious approach is to rank
the authors in descending order of the sum of all feature values.
Helpfulness Score (HS): In many review sites (e.g., Amazon),
readers can provide helpfulness feedback to each review. It is
reasonable to assume that spam reviews should get less
helpfulness feedback. HS uses the mean helpfulness score
(percentage of people who found a review helpful) of reviews of
each reviewer to rank reviewers in ascending order of the scores.

Finally, we note that although in ASM spam detection is
modeled as clustering (§2.3), our key task is to estimate author
spamcities (the posterior on the latent variable, 𝑠𝑎~𝐵𝑒𝑡𝑎 ∈ [0, 1])
for ranking authors according to their spamicities.. Standard
clustering algorithms (e.g., k-means) are not suitable baselines
because they only produce clusters, but do not generate a ranking
of authors.

3.3 Evaluation Results
As noted in §1, we are not aware of any gold-standard ground
truth labeled data for opinion spammers. Hence, this work focuses
on Bayesian inference in the unsupervised setting. To evaluate the
author spamicities computed by different systems, we use two
methods: review classification and human evaluation.

Running the systems in §3.2 on our data generates a ranking of
50,704 reviewers. However, human evaluation on all authors is
clearly impossible. Even for review classification, the number of
reviews is huge for such a large number of reviewers. We thus
sample the rank positions 1, 10, 20,…, 50000 (with a sampling
lag/interval of 10 ranks) to construct the evaluation set, 𝐸 of 5000
rank positions. Using a fixed sampling lag ensures that
performance on 𝐸 is a good approximation over the entire range.
5000 is reasonable for review classification, but for human
evaluation we need to use a subset (see below).

3.3.1 Review Classification
This is a new evaluation method in the unsupervised setting.

The idea is that if ASM is effective, it must rank the highly likely
spammers at the top and highly likely non-spammers at the
bottom. We use a supervised classification of likely spammers and
likely non-spammers to evaluate this ranking. Instead of
classifying reviewers, we classify their reviews.

Prior works in psycholinguistic research (e.g. [32]) have shown
that faking or lying usually involves more use of personal

2 http://www.cs.umass.edu/~vdang/ranklib.html

pronouns and associated verb actions to justify fake statements
eventually resulting in more use of positive sentiments and
emotion words. The hypothesis has been attested in [34] where
text classification using n-gram features have been shown quite
effective in detecting spam and non-spam reviews. Thus, if our
classification of reviews based on text features is good, it implies
that the ASM ranking of reviewers according to spamicites is
effective because text classification concurs with the abnormal
behavior spam detection of ASM. The key characteristic of this
classification is that the text features have not been used in ASM.
Clearly, using the same set of features will not be meaningful.

For this set of experiments, we consider the reviews from the
top k% ranked authors to be in the spam (+) class while reviews
from the bottom k% of the ranked authors to be in the non-spam
(–) class. Although the actual percentage of spammers is
unknown, deception prevalence studies [33, 43] have reported 8-
15% spam rate in online review sites. We thus report results for k
= 5%, 10%, and 15%. We induce a linear kernel SVM3 using
SVMLight [16] and report 5-fold cross validation results in Table 2.
The features are 1-3-grams. We note the following observations:
1. As k increases, we find a monotonic degradation in review

classification performance (except HS) which is expected as the
spamicities of top and bottom authors get closer which makes
the corresponding review classification harder.

2. For k = 5%, ASM models performs best on F1 and Accuracy
metrics. Next in order are FSum, RankBoost, and SVMRank. It
is interesting that the simple baseline FSum performs quite well
for k = 5%. The reason is attributed to the fact that the top
positions are mostly populated by heavy spammers while the
bottom positions are populated by genuine reviewers and hence
a naïve un-weighted FSum could capture this phenomenon.

3. For k = 10, 15%, FSum does not perform so well (SVMRank
and RankBoost outperform Fsum). This is because for k = 10,
15%, the ranked positions involve more difficult cases of
authors/reviewers and a mere sum is not able to balance the
feature weights as not all features are equally discriminating.

4. For k = 10%, SVMRank and RankBoost outperform ASM-UP
and perform close to ASM-IP. ASM-HE still outperforms

3 Other kernels, e.g., polynomial, rbf, sigmoid didn’t perform so well. Linear kernel

has been shown effective for text classification by many researchers, e.g., [18].

SVMRank and RankBoost by 4% in F1 and 2-3
% in accuracy.
5. For k = 15%, ASM variants outperform other
methods and increase F1 by a margin of 2-10%
and accuracy by 3-7%.
6. Performance of HS remains much poorer and
similar for each k showing that it is not able to
rank spammers well, indicating that helpfulness
is not a good metric for spam detection. In fact,
helpfulness votes are subject to abuse.

We note that no significance test is applied
here to compare performance of different
methods because each method uses different
reviews in classification as the output rankings
from the systems are different. However, we
experimented with multiple and different
randomized binning in 5-fold CV which showed
the same trend as in Table 2.

To further analyze the nature of spam and
non-spam reviews by spammers and non-
spammers (based on the rankings of ASM), we
do an additional experiment. We consider the top
15% authors ranked by ASM-HE and randomly
split them into two sets of authors and construct
two classes of reviews coming from each set of

authors. Classification on this set of reviews (coming from two
sets of authors belonging to spammers) yielded 57% accuracy.
Similarly, classification of reviews by two sets of authors
belonging to non-spammers (bottom 15% ranked authors of ASM-
HE) yielded 58% accuracy. We tried different random selection of
authors which also yielded similar accuracies. We note that the
accuracy is greater than 50% but less than the classification
accuracy using ASM-HE (Table 2). This shows that the above
experiment is likely to separate authors and not spam vs. non-
spam reviews. As different authors have differences in writing,
the accuracy is greater than 50% (random guessing). But it is
lower than spam and non-spam review classification because
reviews of both classes come from spammers (or non-spammers)
and hence noisy. Our result of author classification is supported
by prior studies in [20] which showed that authorship attribution
using n-grams is not very effective. It also indirectly shows that a
lower accuracy obtained by various competitors in Table 2 have
more noise in ranking authors based on spamicity.

These results render confidence in the proposed models. It also
indirectly shows that there are some linguistic differences between
spam and non-spam reviews.

3.3.2 Human Evaluation
Our second evaluation is based on human expert judgment,

which is commonly used in research on spam, e.g., Web [3, 38],
email [5], and even blogs and social spam [22]. Human evaluation
has also been used for opinion spam in prior works [42, 46]. It is
however important to note that just by reading a single review
without any context, it is very hard to determine whether a review
is fake (spam) or not [34]. However, it has been shown in [29]
that when sufficient context is provided e.g., reviewing patterns,
ratings, type/brand of products reviewed, posting activity trails,
etc., human expert evaluation becomes easier.

For this work, we used 3 domain expert judges: employees at
Rediff Shopping; eBay.in for evaluating our ranked reviewers
based on spamicites. The judges had sufficient background in
reviews of products and sellers due to their nature of their work in
online shopping. The judges were briefed with many opinion
spam signals: i) Having zero caveats, and full of empty adjectives.
ii) Purely glowing praises with no downsides. iii) Suspicious
brand affinity/aversion, posting trails, etc., from prior findings and

Table 2 (a)
k

(%)
ASM-UP ASM-IP ASM-HE SVMRank

P R F1 A P R F1 A P R F1 A P R F1 A
5 77.7 74.0 75.8 75.5 77.9 74.8 76.3 75.7 79.6 75.1 77.3 77.4 72.1 74.7 73.4 73.1
10 68.5 62.9 65.6 63.5 72.1 69.5 70.8 72.8 76.8 70.3 73.4 73.4 67.9 70.3 69.1 70.4
15 62.9 59.9 61.4 60.2 66.8 64.5 65.6 66.1 68.9 67.4 68.1 66.7 57.2 60.9 58.9 59.2

Table 2 (b)
k

(%)
RankBoost FSum HS

P R F1 A P R F1 A P R F1 A
5 74.6 75.1 74.8 74.6 76.1 73.6 74.8 75.2 57.8 61.7 59.7 59.8
10 68.1 71.6 69.8 71.2 67.3 60.2 63.6 61.4 58.9 60.8 59.8 60.6
15 58.3 57.8 58.0 59.8 60.2 55.3 57.6 57.2 61.7 58.0 59.8 58.2

Table 2 (a, b): 5-fold SVM CV for review classification using top k (%) authors’ reviews
as the spam (+) class and bottom k % authors’ reviews as the non-spam (-) class. P:
Precision, R:Recall, F1:F1-Score, A:Accuray.

 ASM-UP ASM-IP ASM-HE SVMRank RankBoost FSum HS
 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

J1 31 15 3 36 11 1 43 5 0 36 19 1 37 13 1 34 13 0 6 14 17
J2 28 14 3 31 6 1 36 6 0 32 16 4 34 8 2 32 11 0 5 12 14
J3 29 13 2 33 8 0 39 3 0 33 11 2 34 11 0 31 8 0 8 9 10

Avg. 29.3 14.0 2.67 33.3 8.33 0.67 39.3 4.67 0 33.7 15.3 2.33 35.0 10.7 1 32.3 10.7 0 6.33 11.7 13.7
κFleiss 0.73 0.68 0.74 0.71 0.72 0.76 0.73

Table 3: Number of spammers detected in each bucket (B1, B2, B3) by each judge (J1, J2,
J3) across each method. Last row reports the agreement of judges using Fleiss’ multi-
rater kappa (κFleiss) for each method.

consumer sites [1, 12]. These signals are sensible as they have
been compiled by consumer domain experts with extensive know-
how on fake reviews. Our judges were also familiar with Amazon
reviews and given access to additional metadata, e.g., reviewing
profile, demographic information, etc. Although the judges were
not provided the proposed features, they were encouraged to use
their own signals along with the above existing signals and
reviewer metadata. It is important here to note that providing
various signals compiled from prior works and domain experts in
consumer sites [1, 12] to the judges does not introduce a bias but
enhances judgment. Without any signals, as mentioned above, it is
very difficult to judge by merely reading reviews. It is also hard
for anyone to know a large number of signals without extensive
experience in opinion spam detection. Given a reviewer and his
reviews, the judges were asked to independently examine his
entire profile and to provide a label as spammer or non-spammer.

Due to the large number (5000) of reviewers in the evaluation
set, 𝐸, it would have taken too much time for human judges to
assess all the reviewers in 𝐸. We selected the following three
ranked buckets (B1, B2, B3) for evaluation by our judges:
B1 (Top 50): Reviewers ranked from 1 to 50 by each system in 𝐸.
B2 (Middle 50): Reviewers ranked from 2501 to 2550.
B3 (Bottom 50): Reviewers ranked at bottom 50 ranks in 𝐸.

This is reasonable because these rank-positions in 𝐸 reflect the
performance trend on the entire range. Table 3 reports the results
of each judge (as the count of reviewers labeled as spammers) for
each bucket across each method. Additionally, we report the
agreement of judges using Fleiss multi-rater kappa [11] for each
method in the last row of Table 3. We note the following
observations:
1. All 3 judges perform similarly with slight variation (e.g., J1

seems to be stricter and identifies more spammers in each
bucket than J3). This shows that the judges have consensus in
spam judgments. Further, the kappa values being in the range of
substantial agreement according to scale4 in [23] bolsters
confidence in the judgments.

2. For all methods except HS, we find the average number of
spammers detected by judges decreasing monotonically for
buckets B1, B2, and B3 which is expected from the ranking
produced by the algorithms. HS performs poorly (placing more
spammers in B2, B3 which is undesireable) as also observed in
§3.3.1. Thus, helpfulness votes aren’t useful for spam detection.

3. For B1, ASM-HE performs best. On average, it is able to place
39 spammers in the top 50 rank positions. ASM-IP, RankBoost,
and SVMRank perform poorer than ASM-HE. ASM-UP does
not perform well as uninformed priors are weaker.

4. For B2, the performance order is ASM-HE → ASM-IP →
RankBoost → FSum → ASM-UP → SVMRank. At this
bucket, a good method should place fewer spammers as B2 is in
the middle. This is indeed the case in Table 3. Note that an
ideal ranking should not place any spammers in the middle
range as it is very unlikely that 50% of the reviewers are
spammers.

5. For the last bucket, B3, we find ASM-HE and FSum performing
best by not placing any spammers in the bottom ranks. ASM-IP
does quite well too. Next in performance order are RankBoost
→ SVMRank → ASM-UP. FSum performed very well in B3
because its ranking (based on descending order of feature sum
value) placed authors who ranked very low in all features. As
the features are all abnormal and indicate suspicious behaviors,
reviewers attaining very low FSum values are likely to be

4 No agreement (κ < 0), slight agreement (0 < κ ≤ 0.2), fair agreement (0.2 < κ ≤

0.4), moderate agreement (0.4 < κ ≤ 0.6), substantial agreement (0.6 < κ ≤ 0.8),
and almost perfect agreement for 0.8 < κ ≤ 1.0.

genuine reviewers which explain the good results of FSum.
In summary, we can conclude that proposed ASM-HE is

effective and outperforms other methods and baselines. ASM-IP
and ASM-UP are slightly inferior which is reasonable as they use
weaker priors. Learning to rank methods SVMRank and
RankBoost using proposed behaviors are strong competitors
showing that the proposed behavior features are effective.

4. POSTERIOR ANALYSIS
Apart from generating a ranking of authors based on spamicity
(𝑠𝑎), ASM also estimates the latent distributions of spam and non-
spam reviews and authors corresponding to each observed author
and review feature dimension 𝑓 as reflected in the spam vs. non-
spam clusters or classes, i.e., 𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 , 𝜓𝑘∈{𝑠̂,𝑛�}
𝑓 for 𝐾 = 2 clusters,

𝑘 ∈ {𝑠̂,𝑛�} (Table 1). It is thus interesting to analyze the posterior
on the learned distributions 𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 , 𝜓𝑘∈{𝑠̂,𝑛�}
𝑓 for each feature

dimension 𝑓. Although these are model’s estimates of spam and
non-spam distributions for each anomalous/spamming dimension
or feature (§2.2), it is still worthwhile to study the estimates to see
whether they reflect our understanding of spamming behaviors.

We report the posterior on the latent spam and non-spam
distributions under each feature 𝑓 (𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 , 𝜓𝑘∈{𝑠̂,𝑛�}
𝑓) estimated by

ASM-HE using MC-EM (Algorithm 2). Due to space constraints,
we only focus on ASM-HE as it performed best. We plot the
estimated densities of 𝜃𝑓~𝐵𝑒𝑡𝑎 and 𝜓𝑓~𝐵𝑒𝑡𝑎 for spam and non-
spam clusters in Figure 2. For each estimated latent distribution
(𝜃𝑘∈{𝑠̂,𝑛�}

𝑓 , 𝜓𝑘∈{𝑠̂,𝑛�}
𝑓), we show the density of spam in red (solid) lines

and non-spam in blue (dotted) lines. Furthermore, the spam and
non-spam densities being different are shown in their respective
scales (secondary y-axes, left: blue/dotted for non-spam and right:
solid/red for spam). The x-axis is the domain of the Beta
distribution, [0, 1] which is also the range of the corresponding
observed (author and review) feature where values close to 0 and
1 show extremes of non-spamming and spamming (author and
review). Also shown are the expected values for each latent
behavior for spam (red/dashed lines) and non-spam (blue/dash-
dotted lines) in respective scales and figure captions. We compare
and explain the estimated trends of each behavior feature (see
§2.2) across spam and non-spam classes below.
Content Similarity (𝝍𝑪𝑺): From the densities in Figure 2 (a), we
see that most spammers have a lot of content similarity in their
reviews while non-spammers exhibit much less review similarity.
The expected value of content similarity (using cosine similarity)
for non-spammers is 0.09, much lower than 0.7 for spammers.
Maximum Number of Reviews (𝝍𝑴𝑵𝑹): Figure 2 (b) shows the
difference of densities for this behavior. The density curve for
non-spammers attaining the peak towards the left of the plot has
majority of the probability mass concentrated towards the left.
This shows that non-spammers attain much lower values for 𝑀𝑁𝑅.
Spammers on the other hand have their masses concentrated at the
middle with the density curve attaining a peak at a feature value of
0.34. We recall that this feature, 𝑀𝑁𝑅 is normalized by the largest
value for this feature (maximum number of reviews in a day) in
our data which happens to be 21. This imples that a significant
percentage of spammers have written close to 0.34 × 21 ≈ 7
reviews in a single day. In expectation, we see that the maximum
number of reviews in a day for non-spammers is 0.11, i.e., 0.11 ×
21 ≈ 2 reviews while 0.28 × 21 ≈ 5 reviews for spammers.
Reviewing Burstiness (𝝍𝑩𝑺𝑻): Reviewing busrtiness measures
the account activity (according to difference between last and first
post date) within the estimated threshold 𝜏 = 28 days. At one
extreme, reviewers with overall posting activity more than 28
days obtain a value of 0 while at other extreme reviewers whose
last and first post are very close attain value close to 1. From

Figure 2 (c), we find that density of non-spam class
attains a peak at the feature value 0, showing a large
percentage of non-spammers post reviews spanned over
more than 28 days. This is intuitive as genuine
reviewers use their accounts from time to time to post
reviews. For spammers, the density attains a peak at
feature value 0.89 (i.e., 28×(1-0.89) ≈ 3 days showing
that a considerable percentage of spmamers never use
their accounts after 3 days from the first post date.
Further the expected account acitvity period for
spammers is 0.75, i.e., 28 × (1-0.75) ≈ 7 days. The
expected value for non-spammers is 0.01 which is
negligible showing most non-spammers have account
activities (by posting reviews) for more than 28 days.
Ratio of First Reviews (𝝍𝑹𝑭𝑹): As defined earlier, this
behavior computes the ratio of first reviews to total
reviews per account (reviewer). First review means that
a review was posted first for a given product. From
Figure 2 (d), we see that unlike previous behaviors, the
separation between spammers and non-spammers is not
so disticnt. Although in expectation, the estimated
behavior attains a value of 0.36 for spammers which is
higher than 0.29 for non-spammers, the density profile
for non-spammers remains somewhat high. A plausible
reason for this phenomenon is that there are many
enthusiastic genuine reviewers who review newly
launched products. Spammers obtain higher values in
expectation as reviewing first/early can give them an
edge as early reviews have more impact [26].
Duplicate/Near Dulpicate Reviews on Products
(𝜽𝑫𝑼𝑷): This review feature measures whether a review
posted on a product is similar to other reviews on that
product. This behavior can detect some sockpuppets
where a person posts similar reviews on a product with
multiple ids. There can also be multiple similar review
posts by a single id. In either cases, this behvarior
would return high values for a review when it is a duplicate/near
dulpicate to other reviews on that product. From Figure 2 (e), we
see stark difference of densities of spam and non-spam reviews
based on this behavior. Spam reviews attain higher values (with
density peak at extreme right) while non-spam reviews attain very
low values (with peak density at extreme left).
Extreme Rating (𝜽𝑬𝑿𝑻): Extreme review rating is a boolean
review feature. Its corresponding latent behavior, 𝜃𝐸𝐸𝐸 measures
the extent to which reviews are rated with extreme rating (1 or 5
star rating) on the scale [0, 1]. Form Figure 2 (f), we see that the
density of spam reviews is concentrated towards the extreme
right. Its expected value is 0.86 which implies that about 86%
percent of spam reviews are rated with either 1 or 5 stars. For non-
spam reviews, we find a somewhat evenly distributed density
profile because genuine reviewers usually have different rating
levels. The expected value for non-spam reviews is 0.36, i.e.,
about 36% of non-spam reviews are extreme while the rest 64% is
distributed across 2, 3, and 4 star ratings according to the density.
Rating Deviation (𝜽𝑫𝑬𝑽): Recall that rating deviation for a
review is the extent to which its rating deviates from the average
rating (general rating consensus) on the product. Its corresponding
normalized latent behavior is 𝜃𝐷𝐸𝐷 . From the densities in Figure 2
(g), we find that spam reviews deviate a great deal in rating from
the general rating consensus. For non-spam reviews we find the
density peak is attained at the feature value of 0.12 showing that a
considerable percentage of non-spam reviews don’t deviate very
much in ratings from the average rating. The expected rating
deviation is 0.68 for spam reviews which is almost double of the
expected deviation of 0.34 for non-spam reviews.

Early Time Frame (𝜽𝑬𝑻𝑭): ETF behavior measures how early
was a review posted in reference to the product’s launch date. We
find something very interesting in its corresponding latent
bevarior, 𝜃𝐸𝐸𝐸 . We recall from §3.1 that the estimated threshold
for this feature is 𝛿 = 7 months. So, 0 values indicate that reviews
were posted after 7 months of launch date and values close to 1
indicate review posts close to the lauch date. From the density plot
in Figure 2 (h), we find that the mass for non-spam cluster is
concentrated close to 0 with the expected value of 0.28 showing
that relatively fewer (28%) of non-spam reviews for a product are
posted early within 7 months of launch. This is possible as not all
genuine reviews for a product are posted early within 7 months of
launch. In fact, the bulk of the genuine reviews get accumulated
overtime. We note that these statistics are in expectation and not
for any single product. The 28% of genuine early reviews can be
attributed to reviewing enthusiasts with keen interests in the
products. For spam reviews, we find that the density tends to lean
towards the right, but not extremely concentrated towards the
right. It attains an expected value of 0.61 showing that about 61%
spam reviews are posted within 7 months of product lauch date
while the rest spam reviews accumulate later in the timeline. This
dovetails with the findings in [26] that spammers usually post
reviews early enough to cast a bigger impact.
Rating Abuse (𝜽𝑹𝑨): Rating abuse measures the extent products
are spammed with multiple ratings. The densities for its
corresponding latent beharior, 𝜃𝐸𝐸𝐸 are shown in Figure 2 (i). We
find that a reasonably large percentage of spam reviews (70% in
expectation) have been instances of imparting rating abuse (i.e.,
among the multiple reviews/ratings for the same product by the
same reviewer-id). However for non-spam reviews, the expected

a) 𝜓𝐵𝐶𝐵����� = 0.70, 𝜓𝑀𝐶𝐵����� = 0.09 b) 𝜓𝐵𝑀𝑀𝑅������� = 0.28, 𝜓𝑀𝑀𝑀𝑅������� = 0.11 c) 𝜓𝐵𝐵𝐵𝐸������ = 0.75, 𝜓𝑀𝐵𝐵𝐸������ = 0.10

d) 𝜓𝐵𝑅𝐸𝑅������� = 0.36, 𝜓𝑀𝑅𝐸𝑅������� = 0.29 e) 𝜃𝐵𝐷𝐷𝐷������ = 0.42, 𝜃𝑀𝐷𝐷𝐷������ = 0.07 f) 𝜃𝐵𝐸𝐸𝐸������ = 0.86, 𝜃𝑀𝐸𝐸𝐸������ = 0.36

g) 𝜃𝐵𝐷𝐸𝐷������ = 0.68, 𝜃𝑀𝐷𝐸𝐷������ = 0.34 h) 𝜃𝐵𝐸𝐸𝐸������ = 0.61, 𝜃𝑀𝐸𝐸𝐸������ = 0.28 i) 𝜃𝐵𝑅𝑅����� = 0.70, 𝜃𝑀𝑅𝑅����� = 0.13

Figure 2: Density function (PDF) of estimated latent behvaior variables, 𝝍𝒇~𝑩𝒆𝒕𝒂,
𝜽𝒇~𝑩𝒆𝒕𝒂 corresponding to each author and review behavior feature,
𝒇 ∈ {𝑪𝑺,𝑴𝑵𝑹,𝑩𝑺𝑻,𝑹𝑭𝑹}⋃{𝑫𝑼𝑷,𝑬𝑿𝑻,𝑫𝑬𝑽,𝑬𝑻𝑭,𝑹𝑨}. Estimated posterior densities for
spam (in red/solid) and non-spam (in blue/dotted) are plotted with their respective scales
(left:blue/dotted for non-spam and right: solid/red for spam). Also shown are the expected
values for each latent behavior for spam (red/dashed) and non-spam (blue/dash-dot) in
respective scales. Expected values are also reported in plot captions.

0
0.5
1
1.5
2
2.5
3
3.5

0

1.5

3

4.5

6

7.5

0 0.25 0.5 0.75 1
0
0.5
1
1.5
2
2.5
3
3.5

0

1.5

3

4.5

6

7.5

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

0

2

4

6

8

10

12

0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1
0
1
2
3
4
5
6
7

0

0.5

1

1.5

2

2.5

0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

0
1
2
3
4
5
6
7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

0 0.25 0.5 0.75 1

value for this behavior is 0.13. Thus, most non-spam reviews (≈
100-13 = 87%) are not instances of rating abuse (i.e., are single
reviews by a reviewer on a product). Again, we note that our
model estimates 13% of non-spam reviews being instances of
rating abuse (i.e., multiple ratings on a product by a reviewer)
which is a small percentage. However, from the non-spam density
we can say that the feature values for those reviews must be very
low as the density drops to almost 0 beyond the feature value of
0.5. Again, this is understandable as sometimes a reviewer might
review a prodcut more than once when the product experience
changes from the first review (e.g., a installation fault, not
knowing the correct method of using, etc.).

Lastly, we note that although it is interesting to analyze the
relative discriminative strength of each feature, it is not directly
possible as we do not have ground-truth spamicity labels for
reviewers in our data. Instead, the posterior denisity estimates of
latent bahviors give us some clues to relative feature strengths.

5. CONCLUSIONS
This paper proposed a novel and principled method to exploit

observed reviewing behaviors to detect opinion spammers (fake
reviewers) in an unsupervised Bayesian inference framework. To
our knowledge, this is the first such attempt. Existing methods are
mostly based on heuristics and/or ad-hoc labels for opinion spam
detection. The proposed model has its basis in the theoretic
foundation of probabilistic model based clustering. The Bayesian
framework facilitates characterization of many behavioral
phenomena of opinion spammers using the estimated latent
population distributions. It also enables detection and posterior
density analysis in a single framework. This cannot be done by
any of the existing methods. The paper also proposed a novel way
to evaluate the results of unsupervised opinion spam models using
supervised classification without the need of any manually labeled
data. Finally, a comprehensive set of experiments based on the
proposed automated classification evaluation and human expert
evaluation have been conducted to evaluate the proposed model.
The results across both evaluation metrics show that the proposed
model is effective and outperforms strong competitors.

6. ACKNOWLEDGEMENTS
This project is supported in part by a grant from HP Labs
Innovation Research Program and a grant from National Science
Foundation (NSF) under grant no. IIS-1111092.

7. REFERENCES
[1] Popken, B. 2010. 30 Ways You Can Spot Fake Online Reviews. The

Consumerist.
[2] Bishop, C.M. 2006. Pattern Recognition and Machine Learning. Springer.
[3] Castillo, C., Donato, D., Becchetti, L., Boldi, P., Leonardi, S., Santini, M. and

Vigna, S. 2006. A reference collection for web spam. SIGIR Forum. (2006).
[4] Celeux, G., Chaveau, D., & Diebolt, J. 1996. Stochastic versions of the em

algorithm: an experimental study in the mixture case. Journal of Statistical
Computation and Simulation. (1996).

[5] Chirita, P.A., Diederich, J., and Nejdl, W. 2005. MailRank : Using Ranking for
Spam Detection. CIKM (2005).

[6] Duda, R. O., Hart, P. E., and Stork, D.J. 2001. Pattern Recognition. Wiley.
[7] Fayyad, U., & Irani, K. 1993. Multi-interval discretization of continuous-

valued attributes for classification learning. UAI (1993), 1022–1027.
[8] Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M. and Ghosh, R. 2013.

Exploiting Burstiness in Reviews for Review Spammer Detection. ICWSM.
(2013).

[9] Feng, S., Xing, L., Gogar, A. and Choi, Y. 2012. Distributional Footprints of
Deceptive Product Reviews. ICWSM (2012).

[10] Feng, S., Banerjee R., Choi, Y. 2011. Syntactic Stylometry for Deception
Detection. ACL (2011).

[11] Fleiss, J. 1971. Measuring nominal scale agreement among many raters.
Psychological Bulletin. (1971), 378–382.

[12] Frietchen, C. 2009. How to spot fake user reviews. Consumersearch.com.

[13] Ghosh, S., Viswanath, B., Kooti, F., Sharma, N.K., Korlam, G., Benevenuto,
F., Ganguly, N. and Gummadi, K.P. 2012. Understanding and combating link
farming in the twitter social network. WWW. (2012).

[14] Jindal, N. and Liu, B. 2008. Opinion Spam and Analysis. WSDM (2008).
[15] Jindal, N., Liu, B. and Lim, E.-P. 2010. Finding Unusual Review Patterns

Using Unexpected Rules. CIKM (2010).
[16] Joachims, T. 1999. Making large-scale support vector machine learning

practical. Advances in Kernel Methods. (1999).
[17] Joachims, T. 2002. Optimizing Search Engines Using Clickthrough Data.

KDD (2002).
[18] Joachims, T. 1998. Text categorization with support vector machines:

Learning with many relevant features. ECML (1998).
[19] Kang, H., Wang, K., Soukal, D., Behr, F. and Zheng, Z. 2010. Large-scale bot

detection for search engines. WWW (2010).
[20] Keselj, V., Peng, F., Cercone, N., Thomas, C. 2003. N- Gram-Based Author

Profiles for Authorship Attribution. PACL (2003), 255–264.
[21] Klementiev, A., Roth, D. and Small, K. 2007. An Unsupervised Learning

Algorithm for Rank Aggregation. ECML (2007).
[22] Kolari, P., Java, A., Finin, T., Oates, T. and Joshi, A. 2006. Detecting Spam

Blogs : A Machine Learning Approach. AAAI (2006).
[23] Landis, J. R. and Koch, G.G. 1977. The measurement of observer agreement

for categorical data. Biometrics. (1977), 159–174.
[24] Lauw, H.W., Lim, E. and Wang, K. 2007. Summarizing Review Scores of “

Unequal ” Reviewers. SIAM SDM (2007), 539–544.
[25] Li, F., Huang, M., Yang, Y. and Zhu, X. 2011. Learning to Identify Review

Spam. IJCAI (2011), 2488–2493.
[26] Lim, E.-P., Nguyen, V.-A., Jindal, N., Liu, B. and Lauw, H.W. 2010.

Detecting product review spammers using rating behaviors. CIKM (2010)
[27] Liu, T.Y. 2009. Learning to Rank for Information Retrieval. Foundations and

Trends in Information Retrieval. (2009), 225–331.
[28] McAuliffe, D.B. and J. 2007. Supervised Topic Models. NIPS (2007).
[29] Mukherjee, A., Liu, B. and Glance, N. 2012. Spotting Fake Reviewer Groups

in Consumer Reviews. WWW (2012).
[30] Mukherjee, A., Liu, B., Wang, J., Glance, N. and Jindal, N. 2011. Detecting

Group Review Spam. WWW (2011).
[31] Mukherjee, A., Venkataraman, V., Liu, B. and Glance, N. 2013. What Yelp

Fake Review Filter might be Doing? ICWSM. (2013).
[32] Newman, M.L., Pennebaker, J.W., Berry, D.S., Richards, J.M. 2003. Lying

words: predicting deception from linguistic styles. Personality and Social
Psychology Bulletin. (2003), 665–675.

[33] Ott, M., Cardie, C. and Hancock, J. 2012. Estimating the prevalence of
deception in online review communities. WWW (2012).

[34] Ott, M., Choi, Y., Cardie, C. and Hancock, J.T. 2011. Finding Deceptive
Opinion Spam by Any Stretch of the Imagination. ACL (2011), 309–319.

[35] Pandit, S., Chau, D.H., Wang, S. and Faloutsos, C. 2007. NetProbe : A Fast
and Scalable System for Fraud Detection in Online Auction Networks. WWW.

[36] Ramage, D., Hall, D., Nallapati, R., & Manning, C.D. 2009. A supervised
topic model for credit attribution in multi-labeled corpora. EMNLP (2009).

[37] Smyth, P. 1999. Probabilistic Model-Based Clustering of Multivariate and
Sequential Data. AISTATS (1999).

[38] Spirin, N. and Han, J. 2012. Survey on Web Spam Detection : Principles and
Algorithms. ACM SIGKDD Explorations. 13, 2 (2012), 50–64.

[39] Streitfeld, D. 2012. Buy Reviews on Yelp, Get Black Mark. (2012).
[40] Streitfeld, D. 2012. Fake Reviews, Real Problem. New York Times.
[41] Vogt, C.C., Cottrell, G.W. 1999. Fusion via a linear combination of scores.

Information Retrieval. (1999), 151–173.
[42] Wang, G., Xie, S., Liu, B. and Yu, P.S. 2011. Review Graph Based Online

Store Review Spammer Detection. ICDM (2011), 1242–1247.
[43] Wang, Z. 2010. Anonymity, Social Image, and the Competition for

Volunteers: A Case Study of the Online Market for Reviews. The B.E. Journal
of Economic Analysis & Policy. 10, 1 (Jan. 2010), 1–34.

[44] Wei, F., Li, W., Liu, S. 2010. iRANK: A Rank-Learn-Combine Framework for
Unsupervised Ensemble Ranking. Journal of the American Society for
Information Science and Technology. (2010).

[45] Wu, B., Goel V. & Davison, B.D. 2006. Topical TrustRank: using topicality to
combat Web spam. WWW (2006).

[46] Xie, S., Wang, G., Lin, S. and Yu, P.S. 2012. Review spam detection via
temporal pattern discovery. KDD. (2012).

[47] Freund, Y., Iyer, R., Schapire, R. and Singer, Y. 2003. An efficient boosting
algorithm for combining preferences. Journal of Machine Learning Research.
4 (2003), 933–959.

[48] Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. 1997. L-BFGS-B: Fortran routines
for large scale bound constrained optimization. ACM Transactions on
Mathematical Software. (1997).

	1. INTRODUCTION
	2. MODEL
	2.1 Model Overview
	2.2 Observed Features
	2.3 Process
	2.4 Inference
	2.5 Hyperparameter EM

	3. EXPERIMENTAL EVALUATION
	3.1 Learning Observed Feature Thresholds
	3.2 Systems in our Experiments
	3.2.1 Generative Models: ASM Variants
	3.2.2 Unsupervised Rank Aggregation
	3.2.3 Feature Value Sum and Helpfulness

	3.3 Evaluation Results
	3.3.1 Review Classification
	3.3.2 Human Evaluation

	4. POSTERIOR ANALYSIS
	5. CONCLUSIONS
	6. ACKNOWLEDGEMENTS
	This project is supported in part by a grant from HP Labs Innovation Research Program and a grant from National Science Foundation (NSF) under grant no. IIS-1111092.
	7. REFERENCES

