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Background

● From Wikipedia:
– “The Netflix Prize was an open competition for the best collaborative filtering 

algorithm to predict user ratings for films, based on previous ratings without any 
other information about the users or films, i.e. without the users or the films 
being identified except by numbers assigned for the contest.”

● Two teams dead tied for first place on the test set:
– BellKor's Pragmatic Chaos

– The Ensemble

● Both are covered here, but technically BellKor won because they 
submitted their algorithm 20 minutes earlier. This even though The 
Ensemble did better on the training set (barely).

● Lesson one learned! Be 21 minutes faster! ;-D
– Don't feel too bad, that's the reason they won the competition, but the actual test 

set data was slightly better for them:
● BellKor RMSE: 0.856704
● The Ensemble RMSE: 0.856714



  

Background

● Netflix dataset was 100,480,507 date-stamped 
movie rating performed by anonymous Netflix 
customers between December 31st 1999 and 
December 31st 2005. (Netflix has been around 
since 1997)

● This was 480,189 users and 17,770 movies



  

Background

● There was a hold-out set of 4.2 million ratings for a  
test set consisting of the last 9 movies rated by each 
user that had rated at lest 18 movies.
– This was split in to 3 sets, Probe, Quiz and Test

● Probe was sent out with the training set and labeled
● Quiz set was used for feedback. The results on this were 

published along the way and they are what showed upon the 
leaderboard

● Test is what they actually had to do best on to win the competition. 
They were not informed of their performance on this so the system 
could not be gamed by making small tweaks and rerunning



  

Background

● This hold-out set biased the results in favor of 
those algorithms that could better predict 
people with few previous ratings because each 
user contributes 9

● Also very sparse. Most users do not have an 
opinion logged on most movies

● To qualify you had to improve on Netflix's 
Cinematch by 10%+



  

Note

● This is guessing a rating
– [1,5] is the range of what it's guessing

– This means, though it is machine learning, it is not a 
normal classification problem because 1 means 
something relative to 2 …. 5.

– 1 is lower than 5 and not just a separate class



  

Feature-Weighted Linear Stacking
Sill Takacs Mackey and Lin

● Use an algorithm Feature Weighted Linear 
Stacking (FWLS) “that incorporates meta-
features for improved accuracy while retaining 
the well-known virtues of linear regression 
regarding speed, stability, and interpretability.”

● FWLS combines model predictions linearly 
using coefficients that are themselves linear 
functions of meta-features



  

Intro

● Stacking (aka blending) – two tiers of classifiers
– Tier 1 learns original data

– Tier 2 learns based on Tier 1 output

● Meta features
– Features like the number of products rated by a 

user, or the number of days since release



  

Feature Weighted Linear Stacking

● Let X represent the space of inputs, g1 to gL that 
denote the learned prediction functions of L 
machine learning methods
– gi : X → R for all i

● Let f1 to fM represent a collection M meta-
feature functions to be used in blending
– Each fi maps each data point x in X to its 

corresponding meta feature fi(x) in R



  

Feature Weighted Linear Stacking

● Standard linear regression stacking seeks a 
blend prediction function b

● Were w is a constant in R



  

Feature Weighted Linear Stacking

● Feature Weighted Linear Stacking however has wi 
as a function

● For learned weights vij in R, this changes b to

● Making this optimization function for FWLS (where 
y(x) is the target prediction for a datapoint x in the 
subset of X~ used to train the stacking parameters):



  

Feature Weighted Linear Stacking

● This gives a b which is linear in vij, and we can use a 
single linear regression to estimate those 
parameters.

● The input variables of the regression are the M*L 
products fj(x)gi(x) aka the meta-feature function and 
model predictor evaluated at each x in X
– Reminder fj(x) is the function that gives us x's jth meta-

feature

– gi(x) is the function that gives us x's ith learning algorithm



  



  

Feature Weighted Linear Stacking

● The gi(x)'s are represented as SVD, K-NN, RBM in the figure (these are 
'collaborative filtering algorithms')
– SVD is singular value decomposition

– 'This simplest version of this approach represents each user and each movie as a 
vector of F real numbers. The predicted rating is given by the dot product of the user 
vector with the movie vector'

● As far as I can tell SVD is used to make something more linear by removing dimensions from it

● FWLS can be interpreted as 
– 'a regression against all possible two-way products of models and meta-features.'

– 'as a kind of bipartite quadratic regression against a set of independent variables 
consisting of the models and the meta-features'

– 'a linear combination of models where the coefficients of the combination vary as a 
function of meta-features'

● All true, the first one is the easiest to program though



  

Feature Weighted Linear Stacking

● Constant factors are involved
● To represent constant factors, the meta-feature 

I'm going to call “Always guess 1” is added.
● It acts like a bias factor



  

FWLS Implementation

● N data points
● Matrix A is N x M*L dimensional with elements

– An(i+L(j-1)) = fj(xn)gi(xn)

– xn is the input vector for the the nth data point in X

● Linear regression with Tikhonov regularization:
– Solve this system: (ATA + lI)v = Aty

– O(NM2L2 + M3L3) fortunately N>>>M & L



  

Full list of meta features 1



  

Full list of meta features 2



  

Meta-Features Explanations (some 
of them)

● There are 25 of these (previous pages). Their creation 
is an 'Art'
● 1 is the always guess 1 feature, it exists for constant factors
● 3 and 6 are the log of the number of reviews a user made or 

movie got. This is included to show how much data this user 
or movie has

● 12 and 24 are the log of number of ratings the rater has 
given or the log of the number of ratings the movie the rater 
rated has. (exists for similar reasons to 3/6)

● 10 and 14 characterize available correlation information
● 4, 13 and 15 are included to include time data
● Standard Deviations are a good match for confidence level in 

a prediction where high Std Dev implies low confidence



  

Results

● Accuracy using each
meta-feature on
cross validation (CV)
and the test set

● Yes the final test set,
these results were not
known to the during
contest

● CV and test set are
'reasonably close'



  

Feature Weighted Linear Stacking
End



  

The BellKor Solution to the Netflix 
Grand Prize 

Koren
● The winners.
● This paper is the one the contest said was the 

representative one, there was another one put 
out as well though:
– The BigChaos Solution to the Netflix Grand Prize

● First I'll explain some constituent parts, then the 
ensemble (there are a LOT)



  

The BellKor Solution to the Netflix 
Grand Prize 

Koren
● Notations:

– Users referred to with letters u and v

– Movies referred to with letters i and j

– Rating rui is the preference of user u to movie i

– Rating r(hat)ui is a predicted preference

– Ratings are in range [1,5]

– tui is the time of the rating (in days)

– K = {(u,i) | rui is known}
● R(u) → all movies user u rated that we have the rating for
● R(i) → all users who rated movie I
● N(u) → R(u) + the unknown ratings movies



  

Constituent part 1:
Baseline Predictors

● The data used for this prediction falls in to two broad 
groups

1)Things inherent to the user or movie
● User: This user rates 5s on everything
● Movie: Even people who don't like subtitled films and don't like 

fantasy films might like Pan's Labyrinth
– Note you don't actually have genre info

2)Things about the user and movie

● Baseline Predictors are category 1
● These are 'much of the observed signal'



  

Baseline Predictors

● Bui = m + Bu + Bi

– m – overall average rating

– B – Baseline value related to the subtitle (u for user i for movie ui 
for total) 

● For example:
– Say all movies have an average rating of 3.7 → m = 3.7

– Pan's Labyrinth has .8 above average → Bi = .8

– Arthur is a cinical husk of a human being and hates movies so he 
rates .3 lower → Bu = -.3

– B(Pan's Labyrinth)(Arthur) = 3.7 + .8 - .3 = 4.2 



  

Baseline Predictors

● For all reviews given to this movie:
– Sum the difference between all the scores this movie received and the average score for all movies

– Divide by the total number of reviews it got + a regularizing constant

– l1 = 10, decided by results on probe data

● For all reviews this person gave to all movies they reviewed:
– Sum the difference between the review they gave for all movies they reviewed and that movies' baseline score
– Divide by the total number of reviews this person gave + a regularizing constant

– l2 = 25, decided by results on probe data



  

Baseline Predictors

● That last slide was just an idea of what they were 
going for. What they actually did was this:

● Term 1 was included to find bis and bus that fit the 
intended rating

● Term 2 penalized magnitude to reduce over-fitting

● b* is “all user and item biases”



  

Time Changing Baseline 
Parameters

● Not done yet! Now take in to account time of 
the prediction.
– Maybe the economy was good this year and people 

were happier

– Maybe a war happened and patriotic movies got a 
higher rating

● Note again no genre info

– etc



  

Time Changing Baseline 
Parameters

● Bui = m + Bu(Tui) + Bi(Tui)

– User biases are more fickle and require higher resolution 
than movie biases

● Item baseline is split in to stationary and variable 
parts. Variable part is binned
– bi(t) = bi + bi,bin(t)

– Many bin sizes worked well, they used 30 bins each 
about 10 weeks long spanning all 6 years

● Humans are too fickle for binning



  

Time Changing Baseline 
Parameters

● Idea: Use a linear function to predict value
– b(1)

u(t) = bu + αu * devu(t)
● a and b are learned

– devu(t) = sign(t −tu)*|t −tu|β

● t-tu is the number of days between

● b is .4, from probe set

● Not quite enough because users sometimes have spikes where they rate 
everything the same
– They add a daily bias per user called but

– b(3)
u(t) = bu +αu · devu(t)+but

● All together now the bias term is:
– bui = µ + bu + αu * devu(tui) + bu,tui + bi + bi,Bin(tui)

– By itself this has a RMSE = .9605



  

Time Changing Baseline 
Parameters

● Still not done with this:
● Users respond to ratings they see, and change 

their own personal scale with time
– bui = µ + bu + αu * devu(tui) + bu,tui 

+ (bi + bi,Bin(tui) ) * cu(tui)

– They don't go in to much detail on the c term other 
than to say it is trained similarly to b

– This lowers RMSE to .9555



  

Frequency

● The Baseline term isn't done yet!
● How many ratings a user gives in a day is indicative of what their 

bias will be as well
– Fui is the number of movies u reviewed on day tui

– This number is not used, instead they take a rounded down logarithm:
● fui = loga Fui rounded down

– a is 6.76
● Oddly enough this effects the item bias rather than user bias

– bui = µ + bu + αu * devu(tui) + bu,tui + (bi + bi,Bin(tui) ) * cu(tui) + bi,fui

– RMSE is now .9278
– This is now officially better than what Netflix was using before the 

competition



  

Predicting Future Days

● Waaaaaait a second… Why were we talking 
about daily parameters when we're predicting 
for days that have not occurred yet?
– They were trying to get background info for the 

ratings that are being fed in

– On days in the future, the terms for daily baseline 
information are left out

– This allowed these parameters to absorb short term 
fluctuations in the training data.



  

What's in the Blend?

● In this section they talk about how they get the 
values for parameters and that the values of b 
et al are trained with stochastic gradient 
descent with weight decay and 40 iterations.



  

Matrix Factorization with Temporal 
Dynamics

● bui is the one from before

● Each movie is associated with a qi and each user is associated with a pu. yj is a movie 
variable associated with the pu

– q is an f dimensional vector common to all models

– y is also f dimensional a user factor based upon the movies rated by that user. It's summed for all 
ratings of the user gave and divided by the square root of the number of ratings

– pu(tui)T = (pu1(t),..., puf(t)) also f dimensional and time dependent
● puk(t) = puk +αuk * devu(t)+ pukt

● This is treated the same as the baseline stuff from before, sometimes the last term is omitted for memory's sake

– f is a number



  

Matrix Factorization with Temporal 
Dynamics

● Not quite done, they added a frequency term like before

● From here they go over many parametrizations of f and iterations. 
The one they go with has a RSME of .8777

● They don't go in to the full detail of how it's trained, they just say 
(for the final one they picked)
– “Their respective learning rate is 2e-5, with regularization of 0.02.”
– f is picked to be 200, and the number of iterations is 40



  

Linear Blending

● For a data set of size N:
– let y be a RN vector of unobserved true ratings 

– let x1,...xp in RN be p vectors of known predictions

– Let X be the N by p matrix with columns x1,..xp 

– The mean has been subtracted from y and each column of X

– The goal is to find the linear combination of x1,…,xp that 
best predicts y

– If y were known, linear regression would be use do estimate 
y by Xb



  

Linear Blending

● (XTX)-1 is easy enough but what about (XTy)?
● It is possible to estimate each component of 

this vector with 'high precision'
– Consider the j-th element

– Rewrite as



  

Linear Blending

● Because the mean was subtracted from all terms, 
the first term can be closely approximated to N * 
the quiz set variance 1.274

● Term 2 can be computed strait
● Term 3 is N times the Mean Squared Error 

associated with xj for the quiz data

● This is guaranteed to be accurate within .01% 
except that N isn't known. Luckily it cancels next 
step!



  

Linear Blending

● They changed the formula for Beta to this 
because it somehow gets rid of problems with 
data being correlated
– l = .0014

● Because l messed with things, MSE is now:



  

Linear Blending – 
Overfitting Estimation

● For ordinary least squares regression, the bias of 
the quiz MSE as an estimate of test MSE is -2p/N
– p is the number of predictions

– N is the size of the quiz data

● This bias is called optimism
– Part of this optimism stat is random, but it is small

– Part is that the test set might be just harder or easier 
than the quiz set



  

Linear Blending -
Overfitting Estimation

● The reason the equation below was used (Ridge Regression) is because it:
– Regularizes

– Deals with colinearity
– Helps reduce the uncertainty of XTy from rounding

– This gives degrees of freedom:

– And l = .0014 reduces optimism by .0003 with little penalty if any, and now you 
know why l was .0014



  

Gradient Boosted Decision Trees

● An ensemble learner that uses many learners.
● Similar in concept to Random Forest
● Here's a few used:

– Neighborhood Models with Temporal Dynamics

– 3 Extensions to Restricted Boltzmann Machines

– Another Gradient Boosted Decision Tree

– 2 SVD++'s

– A bunch of things they call predictor #(some number)

● In total there were 3 different ensembles used
– One of 454 learners

– One of 75 learners picked from those

– And one of 24 “BellKor predictors” of similar quality to the ones I described earlier



  

Gradient Boosted Decision Trees

● GBDT are “an additive regression model consisting of an 
ensemble of trees, fitted to current residuals in a forward step-
wise manner.”
– Sequentially fit a series of decision trees to the data

– Each tree predicts the errors of the previous tree

– Often uses perturbed versions of the data

● 4 parameters:
– Number of trees

– Size of each tree

– Shrinkage (learning rate)

– Sampling rate



  

Gradient Boosted Decision Trees

● GBDTs can handle skewed data, so they added 
these data points as well:
– User support (number of rated movies)

– Movie support (number of rating users)

– Frequency of rating

– Day of rating (number of days past since earliest 
rating)



  

Gradient Boosted Decision Trees

● So… they don't actually describe in detail how 
GBDTs work in this paper

● So I had to look elsewhere
– The rest of my explanation is largely based upon 

http://tullo.ch/articles/gradient-boosted-decision-
trees-primer/



  

GBDT - Background

● In a normal supervised learning problem, we take a labeled 
feature vector (x,y) and seek an estimation function F(x) that 
approximates the mapping F*

● Minimize expected loss function
● In gradient boosting, the model assumes an additive 

expansion

– F(x,b,a) = S bih(x,ai)
● Where h is the weak learners and this is a linear combination of weak 

learners

– Bm is the weight a classifier has in the ensemble

– Weights the training examples to compute the ith weak classifier



  

GBDT Pseudocode

● Initialize list of weak learners to a singleton list with 
simple prior

● For each round in 1 to numRounds
– Reweight examples (x,y) to (x,y') by upweighting examples that 

the existing forest poorly predicts

● Estimate new weak classifier hi on weighted examples

● Compute bi of the new weak classifier

● Add the pair (hi, bi) to the forest

● Return forest



  

GBDT

● In gradient boosting, iteratively build a 
sequence of predictors, and the final predictor 
is a weighted average of these predictors

● At each step, focus on adding an incremental 
classifier that improves the performance of the 
entire ensemble
– “Gradient descent in functional space”



  

GBDT Results

● Using:
– #trees = 200

– Tree size = 20

– Shrinkage = .18

– Sampling rate = .9

● RMSE for 454 ensemble = .8603
● RMSE for 75 users = .8606



  

GBDT Results

● Using
– #trees = 150

– Tree size = 20

– Shrinkage = 0.2

– Sampling rate = 1.0

● RMSE for the ensemble of 24 = .8664



  

List of non- ensemble blended 
things

● Automatic Parameter Tuning
● Movie KNN

– Correlations

– KNNMovieV3
– KNNMovieV3-2

● Time Dependence Models
● Restricted Boltzmann Machines
● Global Effects
● Global Time Effects
● Weekday Effect
● Integrated Model
● Maximum Margin Matrix Factorization
● NSVD

– NSVD1

– NSVD2

– NSVD1 Discrete

● SBRAMF
● SVD++
● SVD-Time
● SVD with Adaptive User Factors
● SVD-AUF with Kernel Ridge Regression
● SVD Trained with Alternating Least Squares
● Rating Matrix Factorization – SVD
● Neighborhood Aware Matrix Factorization
● Regression on Similarity



  

List of Blends Blended in to the 
Blend

● Linear Regression
● Polynomial Regression
● Binned Linear Regression

– Support Based Bins

– Date Based Bins

– Frequency Based Bins

– Clustering Based Bins

● Subset Generation
– Forward Selection

– Backward Selection

– Probe-Quiz Difference Selection

● Neural Network Blending
● Ensemble Neural Network Blending
● Bagged Gradient Boosted Decision Tree
● KRR on a Probe Subset
● SVD Feature Predictor Extraction
● RBM Feature Predictor Extraction
● KNN Predictor Extraction



  

The End!
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