

Lessons Learned from the Netflix Contest

Arthur Dunbar

Background

● From Wikipedia:
– “The Netflix Prize was an open competition for the best collaborative filtering

algorithm to predict user ratings for films, based on previous ratings without any
other information about the users or films, i.e. without the users or the films
being identified except by numbers assigned for the contest.”

● Two teams dead tied for first place on the test set:
– BellKor's Pragmatic Chaos

– The Ensemble

● Both are covered here, but technically BellKor won because they
submitted their algorithm 20 minutes earlier. This even though The
Ensemble did better on the training set (barely).

● Lesson one learned! Be 21 minutes faster! ;-D
– Don't feel too bad, that's the reason they won the competition, but the actual test

set data was slightly better for them:
● BellKor RMSE: 0.856704
● The Ensemble RMSE: 0.856714

Background

● Netflix dataset was 100,480,507 date-stamped
movie rating performed by anonymous Netflix
customers between December 31st 1999 and
December 31st 2005. (Netflix has been around
since 1997)

● This was 480,189 users and 17,770 movies

Background

● There was a hold-out set of 4.2 million ratings for a
test set consisting of the last 9 movies rated by each
user that had rated at lest 18 movies.
– This was split in to 3 sets, Probe, Quiz and Test

● Probe was sent out with the training set and labeled
● Quiz set was used for feedback. The results on this were

published along the way and they are what showed upon the
leaderboard

● Test is what they actually had to do best on to win the competition.
They were not informed of their performance on this so the system
could not be gamed by making small tweaks and rerunning

Background

● This hold-out set biased the results in favor of
those algorithms that could better predict
people with few previous ratings because each
user contributes 9

● Also very sparse. Most users do not have an
opinion logged on most movies

● To qualify you had to improve on Netflix's
Cinematch by 10%+

Note

● This is guessing a rating
– [1,5] is the range of what it's guessing

– This means, though it is machine learning, it is not a
normal classification problem because 1 means
something relative to 2 …. 5.

– 1 is lower than 5 and not just a separate class

Feature-Weighted Linear Stacking
Sill Takacs Mackey and Lin

● Use an algorithm Feature Weighted Linear
Stacking (FWLS) “that incorporates meta-
features for improved accuracy while retaining
the well-known virtues of linear regression
regarding speed, stability, and interpretability.”

● FWLS combines model predictions linearly
using coefficients that are themselves linear
functions of meta-features

Intro

● Stacking (aka blending) – two tiers of classifiers
– Tier 1 learns original data

– Tier 2 learns based on Tier 1 output

● Meta features
– Features like the number of products rated by a

user, or the number of days since release

Feature Weighted Linear Stacking

● Let X represent the space of inputs, g1 to gL that
denote the learned prediction functions of L
machine learning methods
– gi : X → R for all i

● Let f1 to fM represent a collection M meta-
feature functions to be used in blending
– Each fi maps each data point x in X to its

corresponding meta feature fi(x) in R

Feature Weighted Linear Stacking

● Standard linear regression stacking seeks a
blend prediction function b

● Were w is a constant in R

Feature Weighted Linear Stacking

● Feature Weighted Linear Stacking however has wi
as a function

● For learned weights vij in R, this changes b to

● Making this optimization function for FWLS (where
y(x) is the target prediction for a datapoint x in the
subset of X~ used to train the stacking parameters):

Feature Weighted Linear Stacking

● This gives a b which is linear in vij, and we can use a
single linear regression to estimate those
parameters.

● The input variables of the regression are the M*L
products fj(x)gi(x) aka the meta-feature function and
model predictor evaluated at each x in X
– Reminder fj(x) is the function that gives us x's jth meta-

feature

– gi(x) is the function that gives us x's ith learning algorithm

Feature Weighted Linear Stacking

● The gi(x)'s are represented as SVD, K-NN, RBM in the figure (these are
'collaborative filtering algorithms')
– SVD is singular value decomposition

– 'This simplest version of this approach represents each user and each movie as a
vector of F real numbers. The predicted rating is given by the dot product of the user
vector with the movie vector'

● As far as I can tell SVD is used to make something more linear by removing dimensions from it

● FWLS can be interpreted as
– 'a regression against all possible two-way products of models and meta-features.'

– 'as a kind of bipartite quadratic regression against a set of independent variables
consisting of the models and the meta-features'

– 'a linear combination of models where the coefficients of the combination vary as a
function of meta-features'

● All true, the first one is the easiest to program though

Feature Weighted Linear Stacking

● Constant factors are involved
● To represent constant factors, the meta-feature

I'm going to call “Always guess 1” is added.
● It acts like a bias factor

FWLS Implementation

● N data points
● Matrix A is N x M*L dimensional with elements

– An(i+L(j-1)) = fj(xn)gi(xn)

– xn is the input vector for the the nth data point in X

● Linear regression with Tikhonov regularization:
– Solve this system: (ATA + lI)v = Aty

– O(NM2L2 + M3L3) fortunately N>>>M & L

Full list of meta features 1

Full list of meta features 2

Meta-Features Explanations (some
of them)

● There are 25 of these (previous pages). Their creation
is an 'Art'
● 1 is the always guess 1 feature, it exists for constant factors
● 3 and 6 are the log of the number of reviews a user made or

movie got. This is included to show how much data this user
or movie has

● 12 and 24 are the log of number of ratings the rater has
given or the log of the number of ratings the movie the rater
rated has. (exists for similar reasons to 3/6)

● 10 and 14 characterize available correlation information
● 4, 13 and 15 are included to include time data
● Standard Deviations are a good match for confidence level in

a prediction where high Std Dev implies low confidence

Results

● Accuracy using each
meta-feature on
cross validation (CV)
and the test set

● Yes the final test set,
these results were not
known to the during
contest

● CV and test set are
'reasonably close'

Feature Weighted Linear Stacking
End

The BellKor Solution to the Netflix
Grand Prize

Koren
● The winners.
● This paper is the one the contest said was the

representative one, there was another one put
out as well though:
– The BigChaos Solution to the Netflix Grand Prize

● First I'll explain some constituent parts, then the
ensemble (there are a LOT)

The BellKor Solution to the Netflix
Grand Prize

Koren
● Notations:

– Users referred to with letters u and v

– Movies referred to with letters i and j

– Rating rui is the preference of user u to movie i

– Rating r(hat)ui is a predicted preference

– Ratings are in range [1,5]

– tui is the time of the rating (in days)

– K = {(u,i) | rui is known}
● R(u) → all movies user u rated that we have the rating for
● R(i) → all users who rated movie I
● N(u) → R(u) + the unknown ratings movies

Constituent part 1:
Baseline Predictors

● The data used for this prediction falls in to two broad
groups

1)Things inherent to the user or movie
● User: This user rates 5s on everything
● Movie: Even people who don't like subtitled films and don't like

fantasy films might like Pan's Labyrinth
– Note you don't actually have genre info

2)Things about the user and movie

● Baseline Predictors are category 1
● These are 'much of the observed signal'

Baseline Predictors

● Bui = m + Bu + Bi

– m – overall average rating

– B – Baseline value related to the subtitle (u for user i for movie ui
for total)

● For example:
– Say all movies have an average rating of 3.7 → m = 3.7

– Pan's Labyrinth has .8 above average → Bi = .8

– Arthur is a cinical husk of a human being and hates movies so he
rates .3 lower → Bu = -.3

– B(Pan's Labyrinth)(Arthur) = 3.7 + .8 - .3 = 4.2

Baseline Predictors

● For all reviews given to this movie:
– Sum the difference between all the scores this movie received and the average score for all movies

– Divide by the total number of reviews it got + a regularizing constant

– l1 = 10, decided by results on probe data

● For all reviews this person gave to all movies they reviewed:
– Sum the difference between the review they gave for all movies they reviewed and that movies' baseline score
– Divide by the total number of reviews this person gave + a regularizing constant

– l2 = 25, decided by results on probe data

Baseline Predictors

● That last slide was just an idea of what they were
going for. What they actually did was this:

● Term 1 was included to find bis and bus that fit the
intended rating

● Term 2 penalized magnitude to reduce over-fitting

● b* is “all user and item biases”

Time Changing Baseline
Parameters

● Not done yet! Now take in to account time of
the prediction.
– Maybe the economy was good this year and people

were happier

– Maybe a war happened and patriotic movies got a
higher rating

● Note again no genre info

– etc

Time Changing Baseline
Parameters

● Bui = m + Bu(Tui) + Bi(Tui)

– User biases are more fickle and require higher resolution
than movie biases

● Item baseline is split in to stationary and variable
parts. Variable part is binned
– bi(t) = bi + bi,bin(t)

– Many bin sizes worked well, they used 30 bins each
about 10 weeks long spanning all 6 years

● Humans are too fickle for binning

Time Changing Baseline
Parameters

● Idea: Use a linear function to predict value
– b(1)

u(t) = bu + αu * devu(t)
● a and b are learned

– devu(t) = sign(t −tu)*|t −tu|β

● t-tu is the number of days between

● b is .4, from probe set

● Not quite enough because users sometimes have spikes where they rate
everything the same
– They add a daily bias per user called but

– b(3)
u(t) = bu +αu · devu(t)+but

● All together now the bias term is:
– bui = µ + bu + αu * devu(tui) + bu,tui + bi + bi,Bin(tui)

– By itself this has a RMSE = .9605

Time Changing Baseline
Parameters

● Still not done with this:
● Users respond to ratings they see, and change

their own personal scale with time
– bui = µ + bu + αu * devu(tui) + bu,tui

+ (bi + bi,Bin(tui)) * cu(tui)

– They don't go in to much detail on the c term other
than to say it is trained similarly to b

– This lowers RMSE to .9555

Frequency

● The Baseline term isn't done yet!
● How many ratings a user gives in a day is indicative of what their

bias will be as well
– Fui is the number of movies u reviewed on day tui

– This number is not used, instead they take a rounded down logarithm:
● fui = loga Fui rounded down

– a is 6.76
● Oddly enough this effects the item bias rather than user bias

– bui = µ + bu + αu * devu(tui) + bu,tui + (bi + bi,Bin(tui)) * cu(tui) + bi,fui

– RMSE is now .9278
– This is now officially better than what Netflix was using before the

competition

Predicting Future Days

● Waaaaaait a second… Why were we talking
about daily parameters when we're predicting
for days that have not occurred yet?
– They were trying to get background info for the

ratings that are being fed in

– On days in the future, the terms for daily baseline
information are left out

– This allowed these parameters to absorb short term
fluctuations in the training data.

What's in the Blend?

● In this section they talk about how they get the
values for parameters and that the values of b
et al are trained with stochastic gradient
descent with weight decay and 40 iterations.

Matrix Factorization with Temporal
Dynamics

● bui is the one from before

● Each movie is associated with a qi and each user is associated with a pu. yj is a movie
variable associated with the pu

– q is an f dimensional vector common to all models

– y is also f dimensional a user factor based upon the movies rated by that user. It's summed for all
ratings of the user gave and divided by the square root of the number of ratings

– pu(tui)T = (pu1(t),..., puf(t)) also f dimensional and time dependent
● puk(t) = puk +αuk * devu(t)+ pukt

● This is treated the same as the baseline stuff from before, sometimes the last term is omitted for memory's sake

– f is a number

Matrix Factorization with Temporal
Dynamics

● Not quite done, they added a frequency term like before

● From here they go over many parametrizations of f and iterations.
The one they go with has a RSME of .8777

● They don't go in to the full detail of how it's trained, they just say
(for the final one they picked)
– “Their respective learning rate is 2e-5, with regularization of 0.02.”
– f is picked to be 200, and the number of iterations is 40

Linear Blending

● For a data set of size N:
– let y be a RN vector of unobserved true ratings

– let x1,...xp in RN be p vectors of known predictions

– Let X be the N by p matrix with columns x1,..xp

– The mean has been subtracted from y and each column of X

– The goal is to find the linear combination of x1,…,xp that
best predicts y

– If y were known, linear regression would be use do estimate
y by Xb

Linear Blending

● (XTX)-1 is easy enough but what about (XTy)?
● It is possible to estimate each component of

this vector with 'high precision'
– Consider the j-th element

– Rewrite as

Linear Blending

● Because the mean was subtracted from all terms,
the first term can be closely approximated to N *
the quiz set variance 1.274

● Term 2 can be computed strait
● Term 3 is N times the Mean Squared Error

associated with xj for the quiz data

● This is guaranteed to be accurate within .01%
except that N isn't known. Luckily it cancels next
step!

Linear Blending

● They changed the formula for Beta to this
because it somehow gets rid of problems with
data being correlated
– l = .0014

● Because l messed with things, MSE is now:

Linear Blending –
Overfitting Estimation

● For ordinary least squares regression, the bias of
the quiz MSE as an estimate of test MSE is -2p/N
– p is the number of predictions

– N is the size of the quiz data

● This bias is called optimism
– Part of this optimism stat is random, but it is small

– Part is that the test set might be just harder or easier
than the quiz set

Linear Blending -
Overfitting Estimation

● The reason the equation below was used (Ridge Regression) is because it:
– Regularizes

– Deals with colinearity
– Helps reduce the uncertainty of XTy from rounding

– This gives degrees of freedom:

– And l = .0014 reduces optimism by .0003 with little penalty if any, and now you
know why l was .0014

Gradient Boosted Decision Trees

● An ensemble learner that uses many learners.
● Similar in concept to Random Forest
● Here's a few used:

– Neighborhood Models with Temporal Dynamics

– 3 Extensions to Restricted Boltzmann Machines

– Another Gradient Boosted Decision Tree

– 2 SVD++'s

– A bunch of things they call predictor #(some number)

● In total there were 3 different ensembles used
– One of 454 learners

– One of 75 learners picked from those

– And one of 24 “BellKor predictors” of similar quality to the ones I described earlier

Gradient Boosted Decision Trees

● GBDT are “an additive regression model consisting of an
ensemble of trees, fitted to current residuals in a forward step-
wise manner.”
– Sequentially fit a series of decision trees to the data

– Each tree predicts the errors of the previous tree

– Often uses perturbed versions of the data

● 4 parameters:
– Number of trees

– Size of each tree

– Shrinkage (learning rate)

– Sampling rate

Gradient Boosted Decision Trees

● GBDTs can handle skewed data, so they added
these data points as well:
– User support (number of rated movies)

– Movie support (number of rating users)

– Frequency of rating

– Day of rating (number of days past since earliest
rating)

Gradient Boosted Decision Trees

● So… they don't actually describe in detail how
GBDTs work in this paper

● So I had to look elsewhere
– The rest of my explanation is largely based upon

http://tullo.ch/articles/gradient-boosted-decision-
trees-primer/

GBDT - Background

● In a normal supervised learning problem, we take a labeled
feature vector (x,y) and seek an estimation function F(x) that
approximates the mapping F*

● Minimize expected loss function
● In gradient boosting, the model assumes an additive

expansion

– F(x,b,a) = S bih(x,ai)
● Where h is the weak learners and this is a linear combination of weak

learners

– Bm is the weight a classifier has in the ensemble

– Weights the training examples to compute the ith weak classifier

GBDT Pseudocode

● Initialize list of weak learners to a singleton list with
simple prior

● For each round in 1 to numRounds
– Reweight examples (x,y) to (x,y') by upweighting examples that

the existing forest poorly predicts

● Estimate new weak classifier hi on weighted examples

● Compute bi of the new weak classifier

● Add the pair (hi, bi) to the forest

● Return forest

GBDT

● In gradient boosting, iteratively build a
sequence of predictors, and the final predictor
is a weighted average of these predictors

● At each step, focus on adding an incremental
classifier that improves the performance of the
entire ensemble
– “Gradient descent in functional space”

GBDT Results

● Using:
– #trees = 200

– Tree size = 20

– Shrinkage = .18

– Sampling rate = .9

● RMSE for 454 ensemble = .8603
● RMSE for 75 users = .8606

GBDT Results

● Using
– #trees = 150

– Tree size = 20

– Shrinkage = 0.2

– Sampling rate = 1.0

● RMSE for the ensemble of 24 = .8664

List of non- ensemble blended
things

● Automatic Parameter Tuning
● Movie KNN

– Correlations

– KNNMovieV3
– KNNMovieV3-2

● Time Dependence Models
● Restricted Boltzmann Machines
● Global Effects
● Global Time Effects
● Weekday Effect
● Integrated Model
● Maximum Margin Matrix Factorization
● NSVD

– NSVD1

– NSVD2

– NSVD1 Discrete

● SBRAMF
● SVD++
● SVD-Time
● SVD with Adaptive User Factors
● SVD-AUF with Kernel Ridge Regression
● SVD Trained with Alternating Least Squares
● Rating Matrix Factorization – SVD
● Neighborhood Aware Matrix Factorization
● Regression on Similarity

List of Blends Blended in to the
Blend

● Linear Regression
● Polynomial Regression
● Binned Linear Regression

– Support Based Bins

– Date Based Bins

– Frequency Based Bins

– Clustering Based Bins

● Subset Generation
– Forward Selection

– Backward Selection

– Probe-Quiz Difference Selection

● Neural Network Blending
● Ensemble Neural Network Blending
● Bagged Gradient Boosted Decision Tree
● KRR on a Probe Subset
● SVD Feature Predictor Extraction
● RBM Feature Predictor Extraction
● KNN Predictor Extraction

The End!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

