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Chapter 1

Introduction

In machine learning, the term sequence labelling encompasses all tasks where
sequences of data are transcribed with sequences of discrete labels. Well-known
examples include speech and handwriting recognition, protein secondary struc-
ture prediction and part-of-speech tagging. Supervised sequence labelling refers
specifically to those cases where a set of hand-transcribed sequences is provided
for algorithm training. What distinguishes such problems from the traditional
framework of supervised pattern classification is that the individual data points
cannot be assumed to be independent. Instead, both the inputs and the labels
form strongly correlated sequences. In speech recognition for example, the input
(a speech signal) is produced by the continuous motion of the vocal tract, while
the labels (a sequence of words) are mutually constrained by the laws of syn-
tax and grammar. A further complication is that in many cases the alignment
between inputs and labels is unknown. This requires the use of algorithms able
to determine the location as well as the identity of the output labels.

Recurrent neural networks (RNNs) are a class of artificial neural network
architecture that—inspired by the cyclical connectivity of neurons in the brain—
uses iterative function loops to store information. RNNs have several properties
that make them an attractive choice for sequence labelling: they are flexible in
their use of context information (because they can learn what to store and what
to ignore); they accept many different types and representations of data; and
they can recognise sequential patterns in the presence of sequential distortions.
However they also have several drawbacks that have limited their application
to real-world sequence labelling problems.

Perhaps the most serious flaw of standard RNNs is that it is very difficult
to get them to store information for long periods of time (Hochreiter et al.,
2001b). This limits the range of context they can access, which is of critical im-
portance to sequence labelling. Long Short-Term Memory (LSTM; Hochreiter
and Schmidhuber, 1997) is a redesign of the RNN architecture around special
‘memory cell’ units. In various synthetic tasks, LSTM has been shown capable
of storing and accessing information over very long timespans (Gers et al., 2002;
Gers and Schmidhuber, 2001). It has also proved advantageous in real-world
domains such as speech processing (Graves and Schmidhuber, 2005b) and bioin-
formatics (Hochreiter et al., 2007). LSTM is therefore the architecture of choice
throughout the book.

Another issue with the standard RNN architecture is that it can only access
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CHAPTER 1. INTRODUCTION 2

contextual information in one direction (typically the past, if the sequence is
temporal). This makes perfect sense for time-series prediction, but for sequence
labelling it is usually advantageous to exploit the context on both sides of the
labels. Bidirectional RNNs (Schuster and Paliwal, 1997) scan the data forwards
and backwards with two separate recurrent layers, thereby removing the asym-
metry between input directions and providing access to all surrounding context.
Bidirectional LSTM (Graves and Schmidhuber, 2005b) combines the benefits of
long-range memory and bidirectional processing.

For tasks such as speech recognition, where the alignment between the inputs
and the labels is unknown, RNNs have so far been limited to an auxiliary role.
The problem is that the standard training methods require a separate target
for every input, which is usually not available. The traditional solution—the
so-called hybrid approach—is to use hidden Markov models to generate targets
for the RNN, then invert the RNN outputs to provide observation probabilities
(Bourlard and Morgan, 1994). However the hybrid approach does not exploit
the full potential of RNNs for sequence processing, and it also leads to an awk-
ward combination of discriminative and generative training. The connectionist
temporal classification (CTC) output layer (Graves et al., 2006) removes the
need for hidden Markov models by directly training RNNs to label sequences
with unknown alignments, using a single discriminative loss function. CTC can
also be combined with probabilistic language models for word-level speech and
handwriting recognition.

Recurrent neural networks were designed for one-dimensional sequences.
However some of their properties, such as robustness to warping and flexible
use of context, are also desirable in multidimensional domains like image and
video processing. Multidimensional RNNs, a special case of directed acyclic
graph RNNs (Baldi and Pollastri, 2003), generalise to multidimensional data by
replacing the one-dimensional chain of network updates with an n-dimensional
grid. Multidimensional LSTM (Graves et al., 2007) brings the improved mem-
ory of LSTM to multidimensional networks.

Even with the LSTM architecture, RNNs tend to struggle with very long
data sequences. As well as placing increased demands on the network’s memory,
such sequences can be be prohibitively time-consuming to process. The problem
is especially acute for multidimensional data such as images or videos, where the
volume of input information can be enormous. Hierarchical subsampling RNNs
(Graves and Schmidhuber, 2009) contain a stack of recurrent network layers
with progressively lower spatiotemporal resolution. As long as the reduction in
resolution is large enough, and the layers at the bottom of the hierarchy are small
enough, this approach can be made computationally efficient for almost any size
of sequence. Furthermore, because the effective distance between the inputs
decreases as the information moves up the hierarchy, the network’s memory
requirements are reduced.

The combination of multidimensional LSTM, CTC output layers and hierar-
chical subsampling leads to a general-purpose sequence labelling system entirely
constructed out of recurrent neural networks. The system is flexible, and can
be applied with minimal adaptation to a wide range of data and tasks. It is also
powerful, as this book will demonstrate with state-of-the-art results in speech
and handwriting recognition.
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1.1 Structure of the Book

The chapters are roughly grouped into three parts: background material is
presented in Chapters 2–4, Chapters 5 and 6 are primarily experimental, and
new methods are introduced in Chapters 7–9.

Chapter 2 briefly reviews supervised learning in general, and pattern classi-
fication in particular. It also provides a formal definition of sequence labelling,
and discusses three classes of sequence labelling task that arise under different
relationships between the input and label sequences. Chapter 3 provides back-
ground material for feedforward and recurrent neural networks, with emphasis
on their application to labelling and classification tasks. It also introduces the
sequential Jacobian as a tool for analysing the use of context by RNNs.

Chapter 4 describes the LSTM architecture and introduces bidirectional
LSTM (BLSTM). Chapter 5 contains an experimental comparison of BLSTM to
other neural network architectures applied to framewise phoneme classification.
Chapter 6 investigates the use of LSTM in hidden Markov model-neural network
hybrids. Chapter 7 introduces connectionist temporal classification, Chapter 8
covers multidimensional networks, and hierarchical subsampling networks are
described in Chapter 9.



Chapter 2

Supervised Sequence
Labelling

This chapter provides the background material and literature review for su-
pervised sequence labelling. Section 2.1 briefly reviews supervised learning in
general. Section 2.2 covers the classical, non-sequential framework of supervised
pattern classification. Section 2.3 defines supervised sequence labelling, and de-
scribes the different classes of sequence labelling task that arise under different
assumptions about the label sequences.

2.1 Supervised Learning

Machine learning problems where a set of input-target pairs is provided for
training are referred to as supervised learning tasks. This is distinct from rein-
forcement learning, where only scalar reward values are provided for training,
and unsupervised learning, where no training signal exists at all, and the algo-
rithm attempts to uncover the structure of the data by inspection alone. We
will not consider either reinforcement learning or unsupervised learning in this
book.

A supervised learning task consists of a training set S of input-target pairs
(x, z), where x is an element of the input space X and z is an element of the
target space Z, along with a disjoint test set S′. We will sometimes refer to
the elements of S as training examples. Both S and S′ are assumed to have
been drawn independently from the same input-target distribution DX×Z . In
some cases an extra validation set is drawn from the training set to validate the
performance of the learning algorithm during training; in particular validation
sets are frequently used to determine when training should stop, in order to
prevent overfitting. The goal is to use the training set to minimise some task-
specific error measure E defined on the test set. For example, in a regression
task, the usual error measure is the sum-of-squares, or squared Euclidean dis-
tance between the algorithm outputs and the test-set targets. For parametric
algorithms (such as neural networks) the usual approach to error minimisation
is to incrementally adjust the algorithm parameters to optimise a loss function
on the training set, which is as closely related as possible to E. The transfer
of learning from the training set to the test set is known as generalisation, and

4



CHAPTER 2. SUPERVISED SEQUENCE LABELLING 5

will be discussed further in later chapters.
The nature and degree of supervision provided by the targets varies greatly

between supervised learning tasks. For example, training a supervised learner
to correctly label every pixel corresponding to an aeroplane in an image requires
a much more informative target than simply training it recognise whether or
not an aeroplane is present. To distinguish these extremes, people sometimes
refer to weakly and strongly labelled data.

2.2 Pattern Classification

Pattern classification, also known as pattern recognition, is one of the most
extensively studied areas of machine learning (Bishop, 2006; Duda et al., 2000),
and certain pattern classifiers, such as multilayer perceptrons (Rumelhart et al.,
1986; Bishop, 1995) and support vector machines (Vapnik, 1995) have become
familiar to the scientific community at large.

Although pattern classification deals with non-sequential data, much of the
practical and theoretical framework underlying it carries over to the sequential
case. It is therefore instructive to briefly review this framework before we turn
to sequence labelling.

The input space X for supervised pattern classification tasks is typically
RM ; that is, the set of all real-valued vectors of some fixed length M . The
target spaces Z is a discrete set of K classes. A pattern classifier h : X 7→ Z
is therefore a function mapping from vectors to labels. If all misclassifications
are equally bad, the usual error measure for h is the classification error rate
Eclass(h, S′) on the test set S′

Eclass(h, S′) =
1

|S′|
∑

(x,z)∈S′

{
0 if h(x) = z

1 otherwise
(2.1)

2.2.1 Probabilistic Classification

Classifiers that directly output class labels, of which support vector machines are
a well known example, are sometimes referred to as discriminant functions. An
alternative approach is probabilistic classification, where the conditional proba-
bilities p(Ck|x) of the K classes given the input pattern x are first determined,
and the most probable is then chosen as the classifier output h(x):

h(x) = arg max
k

p(Ck|x) (2.2)

One advantage of the probabilistic approach is that the relative magnitude of
the probabilities can be used to determine the degree of confidence the classifier
has in its outputs. Another is that it allows the classifier to be combined with
other probabilistic algorithms in a consistent way.

2.2.2 Training Probabilistic Classifiers

If a probabilistic classifier hw yields a conditional distribution p(Ck|x,w) over
the class labels Ck given input x and parameters w, we can take a product
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over the independent and identically distributed (i.i.d.) input-target pairs in
the training set S to get

p(S|w) =
∏

(x,z)∈S

p(z|x,w) (2.3)

which can be inverted with Bayes’ rule to obtain

p(w|S) =
p(S|w)p(w)

p(S)
(2.4)

In theory, the posterior distribution over classes for some new input x can then
be found by integrating over all possible values of w:

p(Ck|x, S) =

∫
w

p(Ck|x,w)p(w|S)dw (2.5)

In practice w is usually very high dimensional and the above integral, referred
to as the predictive distribution of the classifier, is intractable. A common
approximation, known as the maximum a priori (MAP) approximation, is to
find the single parameter vector wMAP that maximises p(w|S) and use this to
make predictions:

p(Ck|x, S) ≈ p(Ck|x,wMAP ) (2.6)

Since p(S) is independent of w, Eqn. (2.4) tells us that

wMAP = arg max
w

p(S|w)p(w) (2.7)

The parameter prior p(w) is usually referred to as a regularisation term. Its effect
is to weight the classifier towards those parameter values which are deemed a
priori more probable. In accordance with Occam’s razor, we usually assume that
more complex parameters (where ‘complex’ is typically interpreted as ‘requiring
more information to accurately describe’) are inherently less probable. For this
reason p(w) is sometimes referred to as an Occam factor or complexity penalty.
In the particular case of a Gaussian parameter prior, where p(w) ∝ |w|2, the
p(w) term is referred to as weight decay. If, on the other hand, we assume
a uniform prior over parameters, we can remove the p(w) term from (2.7) to
obtain the maximum likelihood (ML) parameter vector wML

wML = arg max
w

p(S|w) = arg max
w

∏
(x,z)∈S

p(z|x,w) (2.8)

From now on we will drop the explicit dependence of the classifier outputs on
w, with the understanding that p(z|x) is the probability of x being correctly
classified by hw.

2.2.2.1 Maximum-Likelihood Loss Functions

The standard procedure for finding wML is to minimise a maximum-likelihood
loss function L(S) defined as the negative logarithm of the probability assigned
to S by the classifier

L(S) = − ln
∏

(x,z)∈S

p(z|x) = −
∑

(x,z)∈S

ln p(z|x) (2.9)
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where ln is the natural logarithm (the logarithm to base e). Note that, since
the logarithm is monotonically increasing, minimising − ln p(S) is equivalent to
maximising p(S).

Observing that each example training example (x, z) ∈ S contributes to a
single term in the above sum, we define the example loss L(x, z) as

L(x, z) = − ln p(z|x) (2.10)

and note that

L(S) =
∑

(x,z)∈S

L(x, z) (2.11)

∂L(S)

∂w
=

∑
(x,z)∈S

∂L(x, z)

∂w
(2.12)

It therefore suffices to derive L(x, z) and ∂L(x,z)
∂w to completely define a maximum-

likelihood loss function and its derivatives with respect to the network weights.
When the precise form of the loss function is not important, we will refer to

it simply as L.

2.2.3 Generative and Discriminative Methods

Algorithms that directly calculate the class probabilities p(Ck|x) (also known as
the posterior class probabilities) are referred to as discriminative. In some cases
however, it is preferable to first calculate the class conditional densities p(x|Ck)
and then use Bayes’ rule, together with the prior class probabilities p(Ck) to
find the posterior values

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(2.13)

where
p(x) =

∑
k

p(x|Ck)p(Ck) (2.14)

Algorithms following this approach are referred to as generative, because the
prior p(x) can be used to generate artificial input data. One advantage of
the generative approach is that each class can be trained independently of the
others, whereas discriminative methods have to be retrained every time a new
class is added. However, discriminative methods typically give better results
for classification tasks, because they concentrate all their modelling effort on
finding the correct class boundaries.

This book focuses on discriminative sequence labelling. However, we will
frequently refer to the well-known generative method hidden Markov models
(Rabiner, 1989; Bengio, 1999).

2.3 Sequence Labelling

The goal of sequence labelling is to assign sequences of labels, drawn from a fixed
alphabet, to sequences of input data. For example, one might wish to transcribe
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Figure 2.1: Sequence labelling. The algorithm receives a sequence of input
data, and outputs a sequence of discrete labels.

a sequence of acoustic features with spoken words (speech recognition), or a se-
quence of video frames with hand gestures (gesture recognition). Although such
tasks commonly arise when analysing time series, they are also found in domains
with non-temporal sequences, such as protein secondary structure prediction.

For some problems the precise alignment of the labels with the input data
must also be determined by the learning algorithm. In this book however, we
limit our attention to tasks where the alignment is either predetermined, by
some manual or automatic preprocessing, or it is unimportant, in the sense that
we require only the final sequence of labels, and not the times at which they
occur.

If the sequences are assumed to be independent and identically distributed,
we recover the basic framework of pattern classification, only with sequences
in place of patterns (of course the data-points within each sequence are not
assumed to be independent). In practice this assumption may not be entirely
justified (for example, the sequences may represent turns in a spoken dialogue,
or lines of text in a handwritten form); however it is usually not too damaging
as long as the sequence boundaries are sensibly chosen. We further assume that
each target sequence is at most as long as the corresponding input sequence.
With these restrictions in mind we can formalise the task of sequence labelling
as follows:

Let S be a set of training examples drawn independently from a fixed dis-
tribution DX×Z . The input space X = (RM )∗ is the set of all sequences of
size M real-valued vectors. The target space Z = L∗ is the set of all sequences
over the (finite) alphabet L of labels. We refer to elements of L∗ as label se-
quences or labellings. Each element of S is a pair of sequences (x, z) (From
now on a bold typeface will be used to denote sequences). The target sequence
z = (z1, z2, ..., zU ) is at most as long as the input sequence x = (x1, x2, ..., xT ),
i.e. |z| = U ≤ |x| = T . Regardless of whether the data is a time series, the
distinct points in the input sequence are referred to as timesteps. The task is to
use S to train a sequence labelling algorithm h : X 7→ Z to label the sequences
in a test set S′ ⊂ DX×Z , disjoint from S, as accurately as possible.

In some cases we can apply additional constraints to the label sequences.
These may affect both the choice of sequence labelling algorithm and the er-
ror measures used to assess performance. The following sections describe three
classes of sequence labelling task, corresponding to progressively looser assump-
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Figure 2.2: Three classes of sequence labelling task. Sequence classifi-
cation, where each input sequence is assigned a single class, is a special case
of segment classification, where each of a predefined set of input segments is
given a label. Segment classification is a special case of temporal classification,
where any alignment between input and label sequences is allowed. Temporal
classification data can be weakly labelled with nothing but the target sequences,
while segment classification data must be strongly labelled with both targets and
input-target alignments.

tions about the relationship between the input and label sequences, and discuss
algorithms and error measures suitable for each. The relationship between the
classes is outlined in Figure 2.2.

2.3.1 Sequence Classification

The most restrictive case is where the label sequences are constrained to be
length one. This is referred to as sequence classification, since each input se-
quence is assigned to a single class. Examples of sequence classification task
include the identification of a single spoken work and the recognition of an indi-
vidual handwritten letter. A key feature of such tasks is that the entire sequence
can be processed before the classification is made.

If the input sequences are of fixed length, or can be easily padded to a fixed
length, they can be collapsed into a single input vector and any of the standard
pattern classification algorithms mentioned in Section 2.2 can be applied. A
prominent testbed for fixed-length sequence classification is the MNIST isolated
digits dataset (LeCun et al., 1998a). Numerous pattern classification algorithms
have been applied to MNIST, including convolutional neural networks (LeCun
et al., 1998a; Simard et al., 2003) and support vector machines (LeCun et al.,
1998a; Decoste and Schölkopf, 2002).

However, even if the input length is fixed, algorithm that are inherently
sequential may be beneficial, since they are better able to adapt to translations
and distortions in the input data. This is the rationale behind the application
of multidimensional recurrent neural networks to MNIST in Chapter 8.

As with pattern classification the obvious error measure is the percentage of
misclassifications, referred to as the sequence error rate Eseq in this context:

Eseq(h, S′) =
100

|S′|
∑

(x,z)∈S′

{
0 if h(x) = z

1 otherwise
(2.15)
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Figure 2.3: Importance of context in segment classification. The word
‘defence’ is clearly legible. However the letter ‘n’ in isolation is ambiguous.

where |S′| is the number of elements in S′.

2.3.2 Segment Classification

Segment classification refers to those tasks where the target sequences consist
of multiple labels, but the locations of the labels—that is, the positions of the
input segments to which the labels apply—are known in advance. Segment
classification is common in domains such as natural language processing and
bioinformatics, where the inputs are discrete and can be trivially segmented.
It can also occur in domains where segmentation is difficult, such as audio or
image processing; however this typically requires hand-segmented training data,
which is difficult to obtain.

A crucial element of segment classification, missing from sequence classifi-
cation, is the use of context information from either side of the segments to be
classified. The effective use of context is vital to the success of segment clas-
sification algorithms, as illustrated in Figure 2.3. This presents a problem for
standard pattern classification algorithms, which are designed to process only
one input at a time. A simple solution is to collect the data on either side of the
segments into time-windows, and use the windows as input patterns. However
as well as the aforementioned issue of shifted or distorted data, the time-window
approach suffers from the fact that the range of useful context (and therefore
the required time-window size) is generally unknown, and may vary from seg-
ment to segment. Consequently the case for sequential algorithms is stronger
here than in sequence classification.

The obvious error measure for segment classification is the segment error
rate Eseg, which simply counts the percentage of misclassified segments.

Eseg(h, S′) =
1

Z

∑
(x,z)∈S′

HD(h(x), z) (2.16)

Where
Z =

∑
(x,z)∈S′

|z| (2.17)

and HD(p,q) is the hamming distance between two equal length sequences p
and q (i.e. the number of places in which they differ).

In speech recognition, the phonetic classification of each acoustic frame as
a separate segment is often known as framewise phoneme classification. In this
context the segment error rate is usually referred to as the frame error rate.
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Various neural network architectures are applied to framewise phoneme classi-
fication in Chapter 5. In image processing, the classification of each pixel, or
block of pixels, as a separate segment is known as image segmentation. Mul-
tidimensional recurrent neural networks are applied to image segmentation in
Chapter 8.

2.3.3 Temporal Classification

In the most general case, nothing can be assumed about the label sequences
except that their length is less than or equal to that of the input sequences.
They may even be empty. We refer to this situation as temporal classification
(Kadous, 2002).

The key distinction between temporal classification and segment classifica-
tion is that the former requires an algorithm that can decide where in the input
sequence the classifications should be made. This in turn requires an implicit
or explicit model of the global structure of the sequence.

For temporal classification, the segment error rate is inapplicable, since the
segment boundaries are unknown. Instead we measure the total number of sub-
stitutions, insertions and deletions that would be required to turn one sequence
into the other, giving us the label error rate Elab:

Elab(h, S′) =
1

Z

∑
(x,z)∈S′

ED(h(x), z) (2.18)

Where ED(p,q) is the edit distance between the two sequences p and q (i.e. the
minimum number of insertions, substitutions and deletions required to change
p into q). ED(p,q) can be calculated in O(|p||q|) time (Navarro, 2001). The
label error rate is typically multiplied by 100 so that it can be interpreted as a
percentage (a convention we will follow in this book); however, unlike the other
error measures considered in this chapter, it is not a true percentage, and may
give values higher than 100.

A family of similar error measures can be defined by introducing other types
of edit operation, such as transpositions (caused by e.g. typing errors), or by
weighting the relative importance of the operations. For the purposes of this
book however, the label error rate is sufficient. We will usually refer to the label
error rate according to the type of label in question, for example phoneme error
rate or word error rate. For some temporal classification tasks a completely
correct labelling is required and the degree of error is unimportant. In this case
the sequence error rate (2.15) should be used to assess performance.

The use of hidden Markov model-recurrent neural network hybrids for tem-
poral classification is investigated in Chapter 6, and a neural-network-only ap-
proach to temporal classification is introduced in Chapter 7.



Chapter 3

Neural Networks

This chapter provides an overview of artificial neural networks, with emphasis on
their application to classification and labelling tasks. Section 3.1 reviews mul-
tilayer perceptrons and their application to pattern classification. Section 3.2
reviews recurrent neural networks and their application to sequence labelling. It
also describes the sequential Jacobian, an analytical tool for studying the use of
context information. Section 3.3 discusses various issues, such as generalisation
and input data representation, that are essential to effective network training.

3.1 Multilayer Perceptrons

Artificial neural networks (ANNs) were originally developed as mathematical
models of the information processing capabilities of biological brains (McCulloch
and Pitts, 1988; Rosenblatt, 1963; Rumelhart et al., 1986). Although it is now
clear that ANNs bear little resemblance to real biological neurons, they enjoy
continuing popularity as pattern classifiers.

The basic structure of an ANN is a network of small processing units, or
nodes, joined to each other by weighted connections. In terms of the origi-
nal biological model, the nodes represent neurons, and the connection weights
represent the strength of the synapses between the neurons. The network is
activated by providing an input to some or all of the nodes, and this activation
then spreads throughout the network along the weighted connections. The elec-
trical activity of biological neurons typically follows a series of sharp ‘spikes’,
and the activation of an ANN node was originally intended to model the average
firing rate of these spikes.

Many varieties of ANNs have appeared over the years, with widely varying
properties. One important distinction is between ANNs whose connections form
cycles, and those whose connections are acyclic. ANNs with cycles are referred
to as feedback, recursive, or recurrent, neural networks, and are dealt with in
Section 3.2. ANNs without cycles are referred to as feedforward neural networks
(FNNs). Well known examples of FNNs include perceptrons (Rosenblatt, 1958),
radial basis function networks (Broomhead and Lowe, 1988), Kohonen maps
(Kohonen, 1989) and Hopfield nets (Hopfield, 1982). The most widely used form
of FNN, and the one we focus on in this section, is the multilayer perceptron
(MLP; Rumelhart et al., 1986; Werbos, 1988; Bishop, 1995).

12



CHAPTER 3. NEURAL NETWORKS 13

Figure 3.1: A multilayer perceptron. The S-shaped curves in the hidden
and output layers indicate the application of ‘sigmoidal’ nonlinear activation
functions

As illustrated in Figure 3.1, the units in a multilayer perceptron are arranged
in layers, with connections feeding forward from one layer to the next. Input
patterns are presented to the input layer, then propagated through the hidden
layers to the output layer. This process is known as the forward pass of the
network.

Since the output of an MLP depends only on the current input, and not
on any past or future inputs, MLPs are more suitable for pattern classification
than for sequence labelling. We will discuss this point further in Section 3.2.

An MLP with a particular set of weight values defines a function from input
to output vectors. By altering the weights, a single MLP is capable of instanti-
ating many different functions. Indeed it has been proven (Hornik et al., 1989)
that an MLP with a single hidden layer containing a sufficient number of nonlin-
ear units can approximate any continuous function on a compact input domain
to arbitrary precision. For this reason MLPs are said to be universal function
approximators.

3.1.1 Forward Pass

Consider an MLP with I input units, activated by input vector x (hence |x| = I).
Each unit in the first hidden layer calculates a weighted sum of the input units.
For hidden unit h, we refer to this sum as the network input to unit h, and
denote it ah. The activation function θh is then applied, yielding the final
activation bh of the unit. Denoting the weight from unit i to unit j as wij , we
have

ah =

I∑
i=1

wihxi (3.1)

bh = θh(ah) (3.2)

Several neural network activation functions are plotted in Figure 3.2. The most
common choices are the hyperbolic tangent
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Figure 3.2: Neural network activation functions. Note the characteristic
‘sigmoid’ or S-shape.

tanh(x) =
e2x − 1

e2x + 1
, (3.3)

and the logistic sigmoid

σ(x) =
1

1 + e−x
(3.4)

The two functions are related by the following linear transform:

tanh(x) = 2σ(2x)− 1 (3.5)

This means that any function computed by a neural network with a hidden layer
of tanh units can be computed by another network with logistic sigmoid units
and vice-versa. They are therefore largely equivalent as activation functions.
However one reason to distinguish between them is that their output ranges are
different; in particular if an output between 0 and 1 is required (for example, if
the output represents a probability) then the logistic sigmoid should be used.

An important feature of both tanh and the logistic sigmoid is their nonlin-
earity. Nonlinear neural networks are more powerful than linear ones since they
can, for example, find nonlinear classification boundaries and model nonlinear
equations. Moreover, any combination of linear operators is itself a linear oper-
ator, which means that any MLP with multiple linear hidden layers is exactly
equivalent to some other MLP with a single linear hidden layer. This contrasts
with nonlinear networks, which can gain considerable power by using successive
hidden layers to re-represent the input data (Hinton et al., 2006; Bengio and
LeCun, 2007).

Another key property is that both functions are differentiable, which allows
the network to be trained with gradient descent. Their first derivatives are

∂tanh(x)

∂x
= 1− tanh(x)2 (3.6)

∂σ(x)

∂x
= σ(x)(1− σ(x)) (3.7)
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Because of the way they reduce an infinite input domain to a finite output range,
neural network activation functions are sometimes referred to as squashing func-
tions.

Having calculated the activations of the units in the first hidden layer, the
process of summation and activation is then repeated for the rest of the hidden
layers in turn, e.g. for unit h in the lth hidden layer Hl

ah =
∑

h′∈Hl−1

wh′hbh′ (3.8)

bh = θh(ah) (3.9)

3.1.2 Output Layers

The output vector y of an MLP is given by the activation of the units in the
output layer. The network input ak to each output unit k is calculated by
summing over the units connected to it, exactly as for a hidden unit. Therefore

ak =
∑
h∈HL

whkbh (3.10)

for a network with L hidden layers.
Both the number of units in the output layer and the choice of output ac-

tivation function depend on the task the network is applied to. For binary
classification tasks, the standard configuration is a single unit with a logistic
sigmoid activation (Eqn. (3.4)). Since the range of the logistic sigmoid is the
open interval (0, 1), the activation of the output unit can be interpreted as the
probability that the input vector belongs to the first class (and conversely, one
minus the activation gives the probability that it belongs to the second class)

p(C1|x) = y = σ(a)

p(C2|x) = 1− y (3.11)

The use of the logistic sigmoid as a binary probability estimator is sometimes
referred as logistic regression, or a logit model. If we use a coding scheme for
the target vector z where z = 1 if the correct class is C1 and z = 0 if the correct
class is C2, we can combine the above expressions to write

p(z|x) = yz(1− y)1−z (3.12)

For classification problems with K > 2 classes, the convention is to have K
output units, and normalise the output activations with the softmax function
(Bridle, 1990) to obtain the class probabilities:

p(Ck|x) = yk =
eak∑K

k′=1 e
ak′

(3.13)

which is also known as a multinomial logit model. A 1-of-K coding scheme rep-
resent the target class z as a binary vector with all elements equal to zero except
for element k, corresponding to the correct class Ck, which equals one. For ex-
ample, if K = 5 and the correct class is C2, z is represented by (0, 1, 0, 0, 0).
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Using this scheme we obtain the following convenient form for the target prob-
abilities:

p(z|x) =

K∏
k=1

yzkk (3.14)

Given the above definitions, the use of MLPs for pattern classification is straight-
forward. Simply feed in an input vector, activate the network, and choose the
class label corresponding to the most active output unit.

3.1.3 Loss Functions

The derivation of loss functions for MLP training follows the steps outlined
in Section 2.2.2. Although attempts have been made to approximate the full
predictive distribution of Eqn. (2.5) for neural networks (MacKay, 1995; Neal,
1996), we will here focus on loss functions derived using maximum likelihood.
For binary classification, substituting (3.12) into the maximum-likelihood ex-
ample loss L(x, z) = − ln p(z|x) described in Section 2.2.2.1, we have

L(x, z) = (z − 1) ln(1− y)− z ln y (3.15)

Similarly, for problems with multiple classes, substituting (3.14) into (2.10) gives

L(x, z) = −
K∑
k=1

zk ln yk (3.16)

See (Bishop, 1995, chap. 6) for more information on these and other MLP loss
functions.

3.1.4 Backward Pass

Since MLPs are, by construction, differentiable operators, they can be trained to
minimise any differentiable loss function using gradient descent. The basic idea
of gradient descent is to find the derivative of the loss function with respect
to each of the network weights, then adjust the weights in the direction of
the negative slope. Gradient descent methods for training neural networks are
discussed in more detail in Section 3.3.1.

To efficiently calculate the gradient, we use a technique known as backpropa-
gation (Rumelhart et al., 1986; Williams and Zipser, 1995; Werbos, 1988). This
is often referred to as the backward pass of the network.

Backpropagation is simply a repeated application of chain rule for partial
derivatives. The first step is to calculate the derivatives of the loss function with
respect to the output units. For a binary classification network, differentiating
the loss function defined in (3.15) with respect to the network outputs gives

∂L(x, z)

∂y
=

y − z
y(1− y)

(3.17)

The chain rule informs us that

∂L(x, z)

∂a
=
∂L(x, z)

∂y

∂y

∂a
(3.18)
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and we can then substitute (3.7), (3.11) and (3.17) into (3.18) to get

∂L(x, z)

∂a
= y − z (3.19)

For a multiclass network, differentiating (3.16) gives

∂L(x, z)

∂yk
= −zk

yk
(3.20)

Bearing in mind that the activation of each unit in a softmax layer depends on
the network input to every unit in the layer, the chain rule gives us

∂L(x, z)

∂ak
=

K∑
k′=1

∂L(x, z)

∂yk′

∂yk′

∂ak
(3.21)

Differentiating (3.13) we obtain

∂yk′

∂ak
= ykδkk′ − ykyk′ (3.22)

and we can then substitute (3.22) and (3.20) into (3.21) to get

∂L(x, z)

∂ak
= yk − zk (3.23)

where we have the used the fact that
∑K
k=1 zk = 1. Note the similarity to

(3.19). The loss function is sometimes said to match the output layer activation
function when the output derivative has this form (Schraudolph, 2002).

We now continue to apply the chain rule, working backwards through the
hidden layers. At this point it is helpful to introduce the following notation:

δj
def
=
∂L(x, z)

∂aj
(3.24)

where j is any unit in the network. For the units in the last hidden layer, we
have

δh =
∂L(x, z)

∂bh

∂bh
∂ah

=
∂bh
∂ah

K∑
k=1

∂L(x, z)

∂ak

∂ak
∂bh

(3.25)

where we have used the fact that L(x, z) depends only on each hidden unit h
through its influence on the output units. Differentiating (3.10) and (3.2) and
substituting into (3.25) gives

δh = θ′(aj)

K∑
k=1

δkwhk (3.26)

The δ terms for each hidden layer Hl before the last one can then be calculated
recursively:

δh = θ′(ah)
∑

h′∈Hl+1

δh′whh′ (3.27)

Once we have the δ terms for all the hidden units, we can use (3.1) to calculate
the derivatives with respect to each of the network weights:

∂L(x, z)

∂wij
=
∂L(x, z)

∂aj

∂aj
∂wij

= δjbi (3.28)
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Figure 3.3: A recurrent neural network.

3.1.4.1 Numerical Gradient

When implementing backpropagation, it is strongly recommended to check the
weight derivatives numerically. This can be done by adding positive and negative
perturbations to each weight and calculating the changes in the loss function:

∂L
∂wij

=
L(wij + ε)− L(wij − ε)

2ε
+O(ε2) (3.29)

This technique is known as symmetrical finite differences. Note that setting ε too
small leads to numerical underflows and decreased accuracy. The optimal value
therefore depends on the floating point accuracy of a given implementation. For
the systems we used, ε = 10−5 generally gave best results.

Note that for a network with W weights, calculating the full gradient using
(3.29) requires O(W 2) time, whereas backpropagation only requires O(W ) time.
Numerical differentiation is therefore impractical for network training. Further-
more, it is recommended to always the choose the smallest possible exemplar
of the network architecture whose gradient you wish to check (for example, an
RNN with a single hidden unit).

3.2 Recurrent Neural Networks

In the previous section we considered feedforward neural networks whose con-
nections did not form cycles. If we relax this condition, and allow cyclical
connections as well, we obtain recurrent neural networks (RNNs). As with feed-
forward networks, many varieties of RNN have been proposed, such as Elman
networks (Elman, 1990), Jordan networks (Jordan, 1990), time delay neural
networks (Lang et al., 1990) and echo state networks (Jaeger, 2001). In this
chapter, we focus on a simple RNN containing a single, self connected hidden
layer, as shown in Figure 3.3.

While the difference between a multilayer perceptron and an RNN may seem
trivial, the implications for sequence learning are far-reaching. An MLP can only
map from input to output vectors, whereas an RNN can in principle map from
the entire history of previous inputs to each output. Indeed, the equivalent
result to the universal approximation theory for MLPs is that an RNN with a
sufficient number of hidden units can approximate any measurable sequence-to-
sequence mapping to arbitrary accuracy (Hammer, 2000). The key point is that



CHAPTER 3. NEURAL NETWORKS 19

the recurrent connections allow a ‘memory’ of previous inputs to persist in the
network’s internal state, and thereby influence the network output.

3.2.1 Forward Pass

The forward pass of an RNN is the same as that of a multilayer perceptron
with a single hidden layer, except that activations arrive at the hidden layer
from both the current external input and the hidden layer activations from the
previous timestep. Consider a length T input sequence x presented to an RNN
with I input units, H hidden units, and K output units. Let xti be the value of
input i at time t, and let atj and btj be respectively the network input to unit j
at time t and the activation of unit j at time t. For the hidden units we have

ath =

I∑
i=1

wihx
t
i +

H∑
h′=1

wh′hb
t−1
h′ (3.30)

Nonlinear, differentiable activation functions are then applied exactly as for an
MLP

bth = θh(ath) (3.31)

The complete sequence of hidden activations can be calculated by starting at
t = 1 and recursively applying (3.30) and (3.31), incrementing t at each step.
Note that this requires initial values b0i to be chosen for the hidden units, corre-
sponding to the network’s state before it receives any information from the data
sequence. In this book, the initial values are always set to zero. However, other
researchers have found that RNN stability and performance can be improved
by using nonzero initial values (Zimmermann et al., 2006a).

The network inputs to the output units can be calculated at the same time
as the hidden activations:

atk =

H∑
h=1

whkb
t
h (3.32)

For sequence classification and segment classification tasks (Section 2.3) the
MLP output activation functions described in Section 3.1.2 (that is, logistic
sigmoid for two classes and softmax for multiple classes) can be reused for RNNs,
with the classification targets typically presented at the ends of the sequences
or segments. It follows that the loss functions in Section 3.1.3 can be reused
too. Temporal classification is more challenging, since the locations of the target
classes are unknown. Chapter 7 introduces an output layer specifically designed
for temporal classification with RNNs.

3.2.2 Backward Pass

Given the partial derivatives of some differentiable loss function L with re-
spect to the network outputs, the next step is to determine the derivatives
with respect to the weights. Two well-known algorithms have been devised
to efficiently calculate weight derivatives for RNNs: real time recurrent learn-
ing (RTRL; Robinson and Fallside, 1987) and backpropagation through time
(BPTT; Williams and Zipser, 1995; Werbos, 1990). We focus on BPTT since
it is both conceptually simpler and more efficient in computation time (though
not in memory).
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Figure 3.4: An unfolded recurrent network. Each node represents a layer
of network units at a single timestep. The weighted connections from the input
layer to hidden layer are labelled ‘w1’, those from the hidden layer to itself (i.e.
the recurrent weights) are labelled ‘w2’ and the hidden to output weights are
labelled ‘w3’. Note that the same weights are reused at every timestep. Bias
weights are omitted for clarity.

Like standard backpropagation, BPTT consists of a repeated application of
the chain rule. The subtlety is that, for recurrent networks, the loss function
depends on the activation of the hidden layer not only through its influence on
the output layer, but also through its influence on the hidden layer at the next
timestep. Therefore

δth = θ′(ath)

(
K∑
k=1

δtkwhk +

H∑
h′=1

δt+1
h′ whh′

)
(3.33)

where

δtj
def
=

∂L
∂atj

(3.34)

The complete sequence of δ terms can be calculated by starting at t = T and
recursively applying (3.33), decrementing t at each step. (Note that δT+1

j =
0 ∀j, since no error is received from beyond the end of the sequence). Finally,
bearing in mind that the same weights are reused at every timestep, we sum over
the whole sequence to get the derivatives with respect to the network weights:
d

∂L
∂wij

=

T∑
t=1

∂L
∂atj

∂atj
∂wij

=

T∑
t=1

δtjb
t
i (3.35)

3.2.3 Unfolding

A useful way to visualise RNNs is to consider the update graph formed by
‘unfolding’ the network along the input sequence. Figure 3.4 shows part of an
unfolded RNN. Note that the unfolded graph (unlike Figure 3.3) contains no
cycles; otherwise the forward and backward pass would not be well defined.

Viewing RNNs as unfolded graphs makes it easier to generalise to networks
with more complex update dependencies. We will encounter such a network
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in the next section, and again when we consider multidimensional networks in
Chapter 8 and hierarchical networks in Chapter 9.

3.2.4 Bidirectional Networks

For many sequence labelling tasks it is beneficial to have access to future as well
as past context. For example, when classifying a particular written letter, it is
helpful to know the letters coming after it as well as those before. However,
since standard RNNs process sequences in temporal order, they ignore future
context. An obvious solution is to add a time-window of future context to the
network input. However, as well as increasing the number of input weights, this
approach suffers from the same problems as the time-window methods discussed
in Sections 2.3.1 and 2.3.2: namely intolerance of distortions, and a fixed range
of context. Another possibility is to introduce a delay between the inputs and
the targets, thereby giving the network a few timesteps of future context. This
method retains the RNN’s robustness to distortions, but it still requires the
range of future context to be determined by hand. Furthermore it places an
unnecessary burden on the network by forcing it to ‘remember’ the original
input, and its previous context, throughout the delay. In any case, neither of
these approaches remove the asymmetry between past and future information.

Bidirectional recurrent neural networks (BRNNs; Schuster and Paliwal, 1997;
Schuster, 1999; Baldi et al., 1999) offer a more elegant solution. The basic idea
of BRNNs is to present each training sequence forwards and backwards to two
separate recurrent hidden layers, both of which are connected to the same out-
put layer. This structure provides the output layer with complete past and
future context for every point in the input sequence, without displacing the in-
puts from the relevant targets. BRNNs have previously given improved results
in various domains, notably protein secondary structure prediction (Baldi et al.,
2001; Chen and Chaudhari, 2004) and speech processing (Schuster, 1999; Fukada
et al., 1999), and we find that they consistently outperform unidirectional RNNs
at sequence labelling.

An unfolded bidirectional network is shown in Figure 3.5.
The forward pass for the BRNN hidden layers is the same as for a unidirec-

tional RNN, except that the input sequence is presented in opposite directions
to the two hidden layers, and the output layer is not updated until both hidden
layers have processed the entire input sequence:

for t = 1 to T do
Forward pass for the forward hidden layer, storing activations at each
timestep

for t = T to 1 do
Forward pass for the backward hidden layer, storing activations at each
timestep

for all t, in any order do
Forward pass for the output layer, using the stored activations from both
hidden layers

Algorithm 3.1: BRNN Forward Pass

Similarly, the backward pass proceeds as for a standard RNN trained with
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Figure 3.5: An unfolded bidirectional network. Six distinct sets of weights
are reused at every timestep, corresponding to the input-to-hidden, hidden-to-
hidden and hidden-to-output connections of the two hidden layers. Note that no
information flows between the forward and backward hidden layers; this ensures
that the unfolded graph is acyclic.

BPTT, except that all the output layer δ terms are calculated first, then fed
back to the two hidden layers in opposite directions:

for all t, in any order do
Backward pass for the output layer, storing δ terms at each timestep

for t = T to 1 do
BPTT backward pass for the forward hidden layer, using the stored δ terms
from the output layer

for t = 1 to T do
BPTT backward pass for the backward hidden layer, using the stored δ
terms from the output layer

Algorithm 3.2: BRNN Backward Pass

3.2.4.1 Causal Tasks

One objection to bidirectional networks is that they violate causality. Clearly,
for tasks such as financial prediction or robot navigation, an algorithm that
requires access to future inputs is unfeasible. However, there are many problems
for which causality is unnecessary. Most obviously, if the input sequences are
spatial and not temporal there is no reason to distinguish between past and
future inputs. This is perhaps why protein structure prediction is the domain
where BRNNs have been most widely adopted (Baldi et al., 2001; Thireou and
Reczko, 2007). However BRNNs can also be applied to temporal tasks, as long
as the network outputs are only needed at the end of some input segment. For
example, in speech and handwriting recognition, the data is usually divided up
into sentences, lines, or dialogue turns, each of which is completely processed
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before the output labelling is required. Furthermore, even for online temporal
tasks, such as automatic dictation, bidirectional algorithms can be used as long
as it is acceptable to wait for some natural break in the input, such as a pause
in speech, before processing a section of the data.

3.2.5 Sequential Jacobian

It should be clear from the preceding discussions that the ability to make use
of contextual information is vitally important for sequence labelling.

It therefore seems desirable to have a way of analysing exactly where and
how an algorithm uses context during a particular data sequence. For RNNs,
we can take a step towards this by measuring the sensitivity of the network
outputs to the network inputs.

For feedforward neural networks, the Jacobian J is the matrix of partial
derivatives of the network output vector y with respect to the input vector x:

Jki =
∂yk
∂xi

(3.36)

These derivatives measure the relative sensitivity of the outputs to small changes
in the inputs, and can therefore be used, for example, to detect irrelevant inputs.
The Jacobian can be extended to recurrent neural networks by specifying the
timesteps at which the input and output variables are measured

J tt
′

ki =
∂ytk
∂xt

′
i

(3.37)

We refer to the resulting four-dimensional matrix as the sequential Jacobian.
Figure 3.6 provides a sample plot of a slice through the sequential Jacobian.

In general we are interested in observing the sensitivity of an output at one
timestep (for example, the point when the network outputs a label) to the
inputs at all timesteps in the sequence. Note that the absolute magnitude of
the derivatives is not important. What matters is the relative magnitudes of
the derivatives to each other, since this determines the relative degree to which
the output is influenced by each input.

Slices like that shown in Figure 3.6 can be calculated with a simple modifi-
cation of the RNN backward pass described in Section 3.2.2. First, all output
delta terms are set to zero except some δtk, corresponding to the time t and out-
put k we are interested to. This term is set equal to its own activation during
the forward pass, i.e. δtk = ytk. The backward pass is then carried out as usual,
and the resulting delta terms at the input layer correspond to the sensitivity
of the output to the inputs over time. The intermediate delta terms (such as
those in the hidden layer) are also potentially interesting, since they reveal the
responsiveness of the output to different parts of the network over time.

The sequential Jacobian will be used throughout the book as a means of
analysing the use of context by RNNs. However it should be stressed that
sensitivity does not correspond directly to contextual importance. For example,
the sensitivity may be very large towards an input that never changes, such
as a corner pixel in a set of images with a fixed colour background, or the
first timestep in a set of audio sequences that always begin in silence, since the
network does not ‘expect’ to see any change there. However, this input will
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Figure 3.6: Sequential Jacobian for a bidirectional network during an
online handwriting recognition task. The derivatives of a single output
unit at time t = 300 are evaluated with respect to the two inputs (correspond-
ing to the x and y coordinates of the pen) at all times throughout the sequence.
For bidirectional networks, the magnitude of the derivatives typically forms an
‘envelope’ centred on t. In this case the derivatives remains large for about 100
timesteps before and after t. The magnitudes are greater for the input corre-
sponding to the x coordinate (blue line) because this has a smaller normalised
variance than the y input (x tends to increase steadily as the pen moves from
left to right, whereas y fluctuates about a fixed baseline); this does not imply
that the network makes more use of the x coordinates than the y coordinates.
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not provide any useful context information. Also, as shown in Figure 3.6, the
sensitivity will be larger for inputs with lower variance, since the network is
tuned to smaller changes. But this does not mean that these inputs are more
important than those with larger variance.

3.3 Network Training

So far we have discussed how neural networks can be differentiated with respect
to loss functions, and thereby trained with gradient descent. However, to ensure
that network training is both effective and tolerably fast, and that it generalises
well to unseen data, several issues must be addressed.

3.3.1 Gradient Descent Algorithms

Most obviously, we need to decide how to follow the error gradient. The simplest
method, known as steepest descent or just gradient descent, is to repeatedly take
a small, fixed-size step in the direction of the negative error gradient of the loss
function:

∆wn = −α ∂L
∂wn

(3.38)

where ∆wn is the nth weight update, α ∈ [0, 1] is the learning rate and wn is
the weight vector before ∆wn is applied. This process is repeated until some
stopping criteria (such as failure to reduce the loss for a given number of steps)
is met.

A major problem with steepest descent is that it easily gets stuck in lo-
cal minima. This can be mitigated by the addition of a momentum term
(Plaut et al., 1986), which effectively adds inertia to the motion of the algo-
rithm through weight space, thereby speeding up convergence and helping to
escape from local minima:

∆wn = m∆wn−1 − α ∂L
∂wn

(3.39)

where m ∈ [0, 1] is the momentum parameter.
When the above gradients are calculated with respect to a loss function

defined over the entire training set, the weight update procedure is referred to as
batch learning. This is in contrast to online or sequential learning, where weight
updates are performed using the gradient with respect to individual training
examples. Pseudocode for online learning with gradient descent is provided in
Algorithm 3.3.

while stopping criteria not met do
Randomise training set order
for each example in the training set do

Run forward and backward pass to calculate the gradient
Update weights with gradient descent algorithm

Algorithm 3.3: Online Learning with Gradient Descent

A large number of sophisticated gradient descent algorithms have been de-
veloped, such as RPROP (Riedmiller and Braun, 1993), quickprop (Fahlman,
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1989), conjugate gradients (Hestenes and Stiefel, 1952; Shewchuk, 1994) and L-
BFGS (Byrd et al., 1995), that generally outperform steepest descent at batch
learning. However steepest descent is much better suited than they are to on-
line learning, because it takes very small steps at each weight update and can
therefore tolerate constantly changing gradients.

Online learning tends to be more efficient than batch learning when large
datasets containing significant redundancy or regularity are used (LeCun et al.,
1998c). In addition, the stochasticity of online learning can help to escape from
local minima (LeCun et al., 1998c), since the loss function is different for each
training example. The stochasticity can be further increased by randomising the
order of the sequences in the training set before each pass through the training
set (often referred to as a training epoch). Training set randomisation is used
for all the experiments in this book.

A recently proposed alternative for online learning is stochastic meta-descent
(Schraudolph, 2002), which has been shown to give faster convergence and im-
proved results for a variety of neural network tasks. However our attempts to
train RNNs with stochastic meta-descent were unsuccessful, and all experiments
in this book were carried out using online steepest descent with momentum.

3.3.2 Generalisation

Although the loss functions for network training are, of necessity, defined on the
training set, the real goal is to optimise performance on a test set of previously
unseen data. The issue of whether training set performance carries over to the
test set is referred to as generalisation, and is of fundamental importance to
machine learning (see e.g. Vapnik, 1995; Bishop, 2006). In general the larger
the training set the better the generalisation. Many methods for improved
generalisation with a fixed size training set (often referred to as regularisers)
have been proposed over the years. In this book, however, only three simple
regularisers are used: early stopping, input noise and weight noise.

3.3.2.1 Early Stopping

For early stopping, part of the training set is removed for use as a validation set.
All stopping criteria are then tested on the validation set instead of the training
set. The ‘best’ weight values are also chosen using the validation set, typically
by picking the weights that minimise on the validation set the error function
used to assess performance on the test set. In practice the two are usually done
in tandem, with the error evaluated at regular intervals on the validation set,
and training stopped after the error fails to decrease for a certain number of
evaluations.

The test set should not be used to decide when to stop training or to choose
the best weight values; these are indirect forms of training on the test set. In
principle, the network should not be evaluated on the test set at all until training
is complete.

During training, the error typically decreases at first on all sets, but after a
certain point it begins to rise on the test and validation sets, while continuing to
decrease on the training set. This behaviour, known as overfitting, is illustrated
in Figure 3.7.
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Figure 3.7: Overfitting on training data. Initially, network error decreases
rapidly on all datasets. Soon however it begins to level off and gradually rise
on the validation and test sets. The dashed line indicates the point of best
performance on the validation set, which is close, but not identical to the optimal
point for the test set.

Early stopping is perhaps the simplest and most universally applicable method
for improved generalisation. However one drawback is that some of the training
set has to be sacrificed for the validation set, which can lead to reduced perfor-
mance, especially if the training set is small. Another problem is that there is
no way of determining a priori how big the validation set should be. For the
experiments in this book, we typically use five to ten percent of the training
set for validation. Note that the validation set does not have to be an accurate
predictor of test set performance; it is only important that overfitting begins at
approximately the same time on both of them.

3.3.2.2 Input Noise

Adding zero-mean, fixed-variance Gaussian noise to the network inputs dur-
ing training (sometimes referred to as training with jitter) is a well-established
method for improved generalisation (An, 1996; Koistinen and Holmström, 1991;
Bishop, 1995). The desired effect is to artificially enhance the size of the train-
ing set, and thereby improve generalisation, by generating new inputs with the
same targets as the original ones.

One problem with input noise is that it is difficult to determine in advance
how large the noise variance should be. Although various rules of thumb exist,
the most reliable method is to set the variance empirically on the validation set.

A more fundamental difficulty is that input perturbations are only effective if
they reflect the variations found in the real data. For example, adding Gaussian
noise to individual pixel values in an image will not generate a substantially
different image (only a ‘speckled’ version of the original) and is therefore unlikely
to aid generalisation to new images. Independently perturbing the points in
a smooth trajectory is ineffectual for the same reason. Input perturbations
tailored towards a particular dataset have been shown to be highly effective
at improving generalisation (Simard et al., 2003); however this requires a prior
model of the data variations, which is not usually available.
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Figure 3.8: Different Kinds of Input Perturbation. A handwritten digit
from the MNIST database (top) is shown perturbed with Gaussian noise (cen-
tre) and elastic deformations (bottom). Since Gaussian noise does not alter the
outline of the digit and the noisy images all look qualitatively the same, this ap-
proach is unlikely to improve generalisation on MNIST. The elastic distortions,
on the other hand, appear to create different handwriting samples out of the
same image, and can therefore be used to artificially extend the training set.

Figure 3.8 illustrates the distinction between Gaussian input noise and data-
specific input perturbations.

Input noise should be regenerated for every example presented to the network
during training; in particular, the same noise should not be re-used for a given
example as the network cycles through the data. Input noise should not be
added during testing, as doing so will hamper performance.

3.3.2.3 Weight Noise

An alternative regularisation strategy is to add zero-mean, fixed variance Gaus-
sian noise to the network weights (Murray and Edwards, 1994; Jim et al., 1996).
Because weight noise or synaptic noise acts on the network’s internal represen-
tation of the inputs, rather than the inputs themselves, it can be used for any
data type. However weight noise is typically less effective than carefully designed
input perturbations, and can lead to very slow convergence.

Weight noise can be used to ‘simplify’ neural networks, in the sense of re-
ducing the amount of information required to transmit the network (Hinton and
van Camp, 1993). Intuitively this is because noise reduces the precision with
which the weights must be described. Simpler networks are preferable because
they tend to generalise better—a manifestation of Occam’s razor.

Algorithm 3.4 shows how weight noise should be applied during online learn-
ing with gradient descent.
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while stopping criteria not met do
Randomise training set order
for each example in the training set do

Add zero mean Gaussian noise to weights
Run forward and backward pass to calculate the gradient
Restore original weights
Update weights with gradient descent algorithm

Algorithm 3.4: Online Learning with Gradient Descent and Weight Noise

As with input noise, weight noise should not be added when the network is
evaluated on test data.

3.3.3 Input Representation

Choosing a suitable representation of the input data is a vital part of any ma-
chine learning task. Indeed, in some cases it is more important to the final
performance than the algorithm itself. Neural networks, however, tend to be
relatively robust to the choice of input representation: for example, in previous
work on phoneme recognition, RNNs were shown to perform almost equally well
using a wide range of speech preprocessing methods (Robinson et al., 1990). We
report similar findings in Chapters 7 and 9, with very different input representa-
tions found to give roughly equal performance for both speech and handwriting
recognition.

The only requirements for neural network input representations are that they
are complete (in the sense of containing all information required to successfully
predict the outputs) and reasonably compact. Although irrelevant inputs are
not as much of a problem for neural networks as they are for algorithms suffering
from the so-called curse of dimensionality (see e.g. Bishop, 2006), having a very
high dimensional input space leads to an excessive number of input weights and
poor generalisation. Beyond that the choice of input representation is something
of a black art, whose aim is to make the relationship between the inputs and
the targets as simple as possible.

One procedure that should be carried out for all neural network input data is
to standardise the components of the input vectors to have mean 0 and standard
deviation 1 over the training set. That is, first calculate the mean

mi =
1

|S|
∑
x∈S

xi (3.40)

and standard deviation

σi =

√
1

|S|
∑
x∈S

(xi −mi)2 (3.41)

of each component of the input vector, then calculate the standardised input
vectors x̂ using

x̂i =
xi −mi

σi
(3.42)

This procedure does not alter the information in the training set, but it im-
proves performance by putting the input values in a range more suitable for
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the standard activation functions (LeCun et al., 1998c). Note that the test and
validation sets should be standardised with the mean and standard deviation of
the training set.

Input standardisation can have a huge effect on network performance, and
was carried out for all the experiments in this book.

3.3.4 Weight Initialisation

Many gradient descent algorithms for neural networks require small, random,
initial values for the weights. For the experiments in this book, we initialised
the weights with either a flat random distribution in the range [−0.1, 0.1] or a
Gaussian distribution with mean 0, standard deviation 0.1. However, we did
not find our results to be very sensitive to either the distribution or the range.
A consequence of having random initial conditions is that each experiment must
be repeated several times to determine significance.



Chapter 4

Long Short-Term Memory

As discussed in the previous chapter, an important benefit of recurrent neural
networks is their ability to use contextual information when mapping between
input and output sequences. Unfortunately, for standard RNN architectures,
the range of context that can be in practice accessed is quite limited. The
problem is that the influence of a given input on the hidden layer, and therefore
on the network output, either decays or blows up exponentially as it cycles
around the network’s recurrent connections. This effect is often referred to in
the literature as the vanishing gradient problem (Hochreiter, 1991; Hochreiter
et al., 2001a; Bengio et al., 1994). The vanishing gradient problem is illustrated
schematically in Figure 4.1

Numerous attempts were made in the 1990s to address the problem of van-
ishing gradients for RNNs. These included non-gradient based training algo-
rithms, such as simulated annealing and discrete error propagation (Bengio
et al., 1994), explicitly introduced time delays (Lang et al., 1990; Lin et al.,
1996; Plate, 1993) or time constants (Mozer, 1992), and hierarchical sequence
compression (Schmidhuber, 1992). The approach favoured by this book is the
Long Short-Term Memory (LSTM) architecture (Hochreiter and Schmidhuber,
1997).

This chapter reviews the background material for LSTM. Section 4.1 de-
scribes the basic structure of LSTM and explains how it tackles the vanishing
gradient problem. Section 4.3 discusses an approximate and an exact algorithm
for calculating the LSTM error gradient. Section 4.4 describes some enhance-
ments to the basic LSTM architecture. Section 4.2 discusses the effect of pre-
processing on long range dependencies. Section 4.6 provides all the equations
required to train and apply LSTM networks.

4.1 Network Architecture

The LSTM architecture consists of a set of recurrently connected subnets, known
as memory blocks. These blocks can be thought of as a differentiable version
of the memory chips in a digital computer. Each block contains one or more
self-connected memory cells and three multiplicative units—the input, output
and forget gates—that provide continuous analogues of write, read and reset
operations for the cells.

31
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Figure 4.1: The vanishing gradient problem for RNNs. The shading of
the nodes in the unfolded network indicates their sensitivity to the inputs at
time one (the darker the shade, the greater the sensitivity). The sensitivity
decays over time as new inputs overwrite the activations of the hidden layer,
and the network ‘forgets’ the first inputs.

Figure 4.2 provides an illustration of an LSTM memory block with a single
cell. An LSTM network is the same as a standard RNN, except that the sum-
mation units in the hidden layer are replaced by memory blocks, as illustrated
in Fig. 4.3. LSTM blocks can also be mixed with ordinary summation units,
although this is typically not necessary. The same output layers can be used for
LSTM networks as for standard RNNs.

The multiplicative gates allow LSTM memory cells to store and access in-
formation over long periods of time, thereby mitigating the vanishing gradient
problem. For example, as long as the input gate remains closed (i.e. has an
activation near 0), the activation of the cell will not be overwritten by the new
inputs arriving in the network, and can therefore be made available to the net
much later in the sequence, by opening the output gate. The preservation over
time of gradient information by LSTM is illustrated in Figure 4.4.

Over the past decade, LSTM has proved successful at a range of synthetic
tasks requiring long range memory, including learning context free languages
(Gers and Schmidhuber, 2001), recalling high precision real numbers over ex-
tended noisy sequences (Hochreiter and Schmidhuber, 1997) and various tasks
requiring precise timing and counting (Gers et al., 2002). In particular, it has
solved several artificial problems that remain impossible with any other RNN
architecture.

Additionally, LSTM has been applied to various real-world problems, such
as protein secondary structure prediction (Hochreiter et al., 2007; Chen and
Chaudhari, 2005), music generation (Eck and Schmidhuber, 2002), reinforce-
ment learning (Bakker, 2002), speech recognition (Graves and Schmidhuber,
2005b; Graves et al., 2006) and handwriting recognition (Liwicki et al., 2007;
Graves et al., 2008). As would be expected, its advantages are most pronounced
for problems requiring the use of long range contextual information.
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Figure 4.2: LSTM memory block with one cell. The three gates are nonlin-
ear summation units that collect activations from inside and outside the block,
and control the activation of the cell via multiplications (small black circles).
The input and output gates multiply the input and output of the cell while the
forget gate multiplies the cell’s previous state. No activation function is applied
within the cell. The gate activation function ‘f’ is usually the logistic sigmoid,
so that the gate activations are between 0 (gate closed) and 1 (gate open). The
cell input and output activation functions (‘g’ and ‘h’) are usually tanh or lo-
gistic sigmoid, though in some cases ‘h’ is the identity function. The weighted
‘peephole’ connections from the cell to the gates are shown with dashed lines.
All other connections within the block are unweighted (or equivalently, have a
fixed weight of 1.0). The only outputs from the block to the rest of the network
emanate from the output gate multiplication.
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Figure 4.3: An LSTM network. The network consists of four input units, a
hidden layer of two single-cell LSTM memory blocks and five output units. Not
all connections are shown. Note that each block has four inputs but only one
output.
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Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and off by the
output gate without affecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coefficients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is difficult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a differentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.
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The original LSTM training algorithm (Hochreiter and Schmidhuber, 1997)
used an approximate error gradient calculated with a combination of Real Time
Recurrent Learning (RTRL; Robinson and Fallside, 1987) and Backpropagation
Through Time (BPTT; Williams and Zipser, 1995). The BPTT part was trun-
cated after one timestep, because it was felt that long time dependencies would
be dealt with by the memory blocks, and not by the (vanishing) flow of activa-
tion around the recurrent connections. Truncating the gradient has the benefit
of making the algorithm completely online, in the sense that weight updates can
be made after every timestep. This is an important property for tasks such as
continuous control or time-series prediction.

However, it is also possible to calculate the exact LSTM gradient with un-
truncated BPTT (Graves and Schmidhuber, 2005b). As well as being more
accurate than the truncated gradient, the exact gradient has the advantage of
being easier to debug, since it can be checked numerically using the technique
described in Section 3.1.4.1. Only the exact gradient is used in this book, and
the equations for it are provided in Section 4.6.

4.4 Architectural Variants

In its original form, LSTM contained only input and output gates. The forget
gates (Gers et al., 2000), along with additional peephole weights (Gers et al.,
2002) connecting the gates to the memory cell were added later to give extended
LSTM (Gers, 2001). The purpose of the forget gates was to provide a way for
the memory cells to reset themselves, which proved important for tasks that
required the network to ‘forget’ previous inputs. The peephole connections,
meanwhile, improved the LSTM’s ability to learn tasks that require precise
timing and counting of the internal states.

Since LSTM is entirely composed of simple multiplication and summation
units, and connections between them, it is straightforward to create further vari-
ants of the block architecture. Indeed it has been shown that alternative struc-
tures with equally good performance on toy problems such as learning context-
free and context-sensitive languages can be evolved automatically (Bayer et al.,
2009). However the standard extended form appears to be a good general pur-
pose structure for sequence labelling, and is used exclusively in this book.

4.5 Bidirectional Long Short-Term Memory

Using LSTM as the network architecture in a bidirectional recurrent neural
network (Section 3.2.4) yields bidirectional LSTM (Graves and Schmidhuber,
2005a,b; Chen and Chaudhari, 2005; Thireou and Reczko, 2007). Bidirectional
LSTM provides access to long range context in both input directions, and will
be used extensively in later chapters.

4.6 Network Equations

This section provides the equations for the activation (forward pass) and BPTT
gradient calculation (backward pass) of an LSTM hidden layer within a recurrent
neural network.
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As before, wij is the weight of the connection from unit i to unit j, the
network input to unit j at time t is denoted atj and activation of unit j at
time t is btj . The LSTM equations are given for a single memory block only.
For multiple blocks the calculations are simply repeated for each block, in any
order. The subscripts ι, φ and ω refer respectively to the input gate, forget gate
and output gate of the block. The subscripts c refers to one of the C memory
cells. The peephole weights from cell c to the input, forget and output gates are
denoted wcι, wcφ and wcω respectively. stc is the state of cell c at time t (i.e. the
activation of the linear cell unit). f is the activation function of the gates, and
g and h are respectively the cell input and output activation functions.

Let I be the number of inputs, K be the number of outputs and H be the
number of cells in the hidden layer. Note that only the cell outputs btc are
connected to the other blocks in the layer. The other LSTM activations, such
as the states, the cell inputs, or the gate activations, are only visible within
the block. We use the index h to refer to cell outputs from other blocks in the
hidden layer, exactly as for standard hidden units. Unlike standard RNNs, an
LSTM layer contains more inputs than outputs (because both the gates and
the cells receive input from the rest of the network, but only the cells produce
output visible to the rest of the network). We therefore define G as the total
number of inputs to the hidden layer, including cells and gates, and use the
index g to refer to these inputs when we don’t wish to distinguish between the
input types. For a standard LSTM layer with one cell per block G is equal to
4H.

As with standard RNNs the forward pass is calculated for a length T input
sequence x by starting at t = 1 and recursively applying the update equations
while incrementing t, and the BPTT backward pass is calculated by starting
at t = T , and recursively calculating the unit derivatives while decrementing
t to one (see Section 3.2 for details). The final weight derivatives are found
by summing over the derivatives at each timestep, as expressed in Eqn. (3.35).
Recall that

δtj
def
=

∂L
∂atj

(4.1)

where L is the loss function used for training.
The order in which the equations are calculated during the forward and

backward passes is important, and should proceed as specified below. As with
standard RNNs, all states and activations are initialised to zero at t = 0, and
all δ terms are zero at t = T + 1.

4.6.1 Forward Pass

Input Gates

atι =

I∑
i=1

wiιx
t
i +

H∑
h=1

whιb
t−1
h +

C∑
c=1

wcιs
t−1
c (4.2)

btι = f(atι) (4.3)
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Forget Gates

atφ =

I∑
i=1

wiφx
t
i +

H∑
h=1

whφb
t−1
h +

C∑
c=1

wcφs
t−1
c (4.4)

btφ = f(atφ) (4.5)

Cells

atc =

I∑
i=1

wicx
t
i +

H∑
h=1

whcb
t−1
h (4.6)

stc = btφs
t−1
c + btιg(atc) (4.7)

Output Gates

atω =

I∑
i=1

wiωx
t
i +

H∑
h=1

whωb
t−1
h +

C∑
c=1

wcωs
t
c (4.8)

btω = f(atω) (4.9)

Cell Outputs

btc = btωh(stc) (4.10)

4.6.2 Backward Pass

εtc
def
=

∂L
∂btc

εts
def
=

∂L
∂stc

Cell Outputs

εtc =

K∑
k=1

wckδ
t
k +

G∑
g=1

wcgδ
t+1
g (4.11)

Output Gates

δtω = f ′(atω)

C∑
c=1

h(stc)ε
t
c (4.12)

States

εts = btωh
′(stc)ε

t
c + bt+1

φ εt+1
s + wcιδ

t+1
ι + wcφδ

t+1
φ + wcωδ

t
ω (4.13)

Cells

δtc = btιg
′(atc)ε

t
s (4.14)

Forget Gates

δtφ = f ′(atφ)

C∑
c=1

st−1c εts (4.15)

Input Gates

δtι = f ′(atι)

C∑
c=1

g(atc)ε
t
s (4.16)



Chapter 5

A Comparison of Network
Architectures

This chapter presents an experimental comparison between various neural net-
work architectures on a framewise phoneme classification task (Graves and
Schmidhuber, 2005a,b). Framewise phoneme classification is an example of a
segment classification task (see Section 2.3.2). It tests an algorithm’s ability
to segment and recognise the constituent parts of a speech signal, requires the
use of contextual information, and can be regarded as a first step to continuous
speech recognition.

Context is of particular importance in speech recognition due to phenomena
such as co-articulation, where the human articulatory system blurs together
adjacent sounds in order to produce them rapidly and smoothly. In many cases
it is difficult to identify a particular phoneme without knowing the phonemes
that occur before and after it. The main conclusion of this chapter is that
network architectures capable of accessing more context give better performance
in phoneme classification, and are therefore more suitable for speech recognition.

Section 5.1 describes the experimental data and task. Section 5.2 gives an
overview of the various neural network architectures and Section 5.3 describes
how they are trained, while Section 5.4 presents the experimental results.

5.1 Experimental Setup

The data for the experiments came from the TIMIT corpus (Garofolo et al.,
1993) of prompted speech, collected by Texas Instruments. The utterances in
TIMIT were chosen to be phonetically rich, and the speakers represent a wide
variety of American dialects. The audio data is divided into sentences, each of
which is accompanied by a phonetic transcript.

The task was to classify every input timestep, or frame in audio parlance,
according to the phoneme it belonged to. For consistency with the literature,
we used the complete set of 61 phonemes provided in the transcriptions. In
continuous speech recognition, it is common practice to use a reduced set of
phonemes (Robinson, 1991), by merging those with similar sounds, and not
separating closures from stops.

39
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The standard TIMIT corpus comes partitioned into training and test sets,
containing 3,696 and 1,344 utterances respectively. In total there were 1,124,823
frames in the training set, and 410,920 in the test set. No speakers or sentences
exist in both the training and test sets. 184 of the training set utterances (chosen
randomly, but kept constant for all experiments) were used as a validation set
for early stopping. All results for the training and test sets were recorded at the
point of lowest error on the validation set.

The following preprocessing, which is standard in speech recognition was
used for the audio data. The input data was characterised as a sequence of
vectors of 26 coefficients, consisting of twelve Mel-frequency cepstral coefficients
(MFCC) plus energy and first derivatives of these magnitudes. First the co-
efficients were computed every 10ms over 25ms windows. Then a Hamming
window was applied, a Mel-frequency filter bank of 26 channels was computed
and, finally, the MFCC coefficients were calculated with a 0.97 pre-emphasis
coefficient. The preprocessing was carried out using the Hidden Markov Model
Toolkit (Young et al., 2006).

5.2 Network Architectures

We used the following five neural network architectures in our experiments
(henceforth referred to by the abbreviations in brackets):

• Bidirectional LSTM, with two hidden LSTM layers (forwards and back-
wards), both containing 93 memory blocks of one cell each (BLSTM)

• Unidirectional LSTM, with one hidden LSTM layer, containing 140 one-
cell memory blocks, trained backwards with no target delay, and forwards
with delays from 0 to 10 frames (LSTM)

• Bidirectional RNN with two hidden layers containing 185 sigmoid units
each (BRNN)

• Unidirectional RNN with one hidden layer containing 275 sigmoid units,
trained with target delays from 0 to 10 frames (RNN)

• MLP with one hidden layer containing 250 sigmoid units, and symmetrical
time-windows from 0 to 10 frames (MLP)

The hidden layer sizes were chosen to ensure that all networks had roughly
the same number of weights W (≈ 100, 000), thereby providing a fair compar-
ison. Note however that for the MLPs the number of weights grew with the
time-window size, and W ranged from 22,061 to 152,061. All networks con-
tained an input layer of size 26 (one for each MFCC coefficient), and an output
layer of size 61 (one for each phoneme). The input layers were fully connected
to the hidden layers and the hidden layers were fully connected to the output
layers. For the recurrent networks, the hidden layers were also fully connected
to themselves. The LSTM blocks had the following activation functions: logis-
tic sigmoids in the range [−2, 2] for the input and output activation functions
of the cell (g and h in Figure 4.2), and in the range [0, 1] for the gates. The
non-LSTM networks had logistic sigmoid activations in the range [0, 1] in the
hidden layers. All units were biased.
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Figure 5.1 illustrates the behaviour of the different architectures during clas-
sification.

5.2.1 Computational Complexity

For all networks, the computational complexity was dominated by the O(W )
feedforward and feedback operations. This means that the bidirectional net-
works and the LSTM networks did not take significantly more time per training
epoch than the unidirectional or RNN or (equivalently sized) MLP networks.

5.2.2 Range of Context

Only the bidirectional networks had access to the complete context of the frame
being classified (i.e. the whole input sequence). For MLPs, the amount of con-
text depended on the size of the time-window. The results for the MLP with no
time-window (presented only with the current frame) give a baseline for perfor-
mance without context information. However, some context is implicitly present
in the window averaging and first-derivatives included in the preprocessor.

Similarly, for unidirectional LSTM and RNN, the amount of future context
depended on the size of target delay. The results with no target delay (trained
forwards or backwards) give a baseline for performance with context in one
direction only.

5.2.3 Output Layers

For the output layers, we used the cross entropy error function and the softmax
activation function, as discussed in Sections 3.1.2 and 3.1.3. The softmax func-
tion ensures that the network outputs are all between zero and one, and that
they sum to one on every timestep. This means they can be interpreted as the
posterior probabilities of the phonemes at a given frame, given all the inputs up
to the current one (with unidirectional networks) or all the inputs in the whole
sequence (with bidirectional networks).

Several alternative error functions have been studied for this task (Chen
and Jamieson, 1996). One modification in particular has been shown to have
a positive effect on continuous speech recognition. This is to weight the error
according to the duration of the current phoneme, ensuring that short phonemes
are as significant to training as longer ones. We will return to the issue of
weighted errors in the next chapter.

5.3 Network Training

For all architectures, we calculated the full error gradient using BPTT for
each utterance, and trained the weights using online steepest descent with mo-
mentum. The same training parameters were used for all experiments: initial
weights chosen from a flat random distribution with range [−0.1, 0.1], a learning
rate of 10−5 and a momentum of 0.9. Weight updates were carried out at the
end of each sequence and the order of the training set was randomised at the
start of each training epoch.
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MLP 10 Frame Time-Window

windowaat

silowddclnixwahdxaeq

Targets

BLSTM

BLSTM Duration Weighted Error

BRNN

Figure 5.1: Various networks classifying the excerpt “at a window”
from TIMIT. In general, the networks found the vowels more difficult than
the consonants, which in English are more distinct. Adding duration weighted
error to BLSTM tends to give better results on short phonemes, (e.g. the closure
and stop ‘dcl’ and ‘d’), and worse results on longer ones (‘ow’), as expected. Note
the more jagged trajectories for the MLP; this is a consequence of not having a
recurrent hidden layer, and therefore calculating each output independently of
the others.
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Keeping the training algorithm and parameters constant allowed us to con-
centrate on the effect of varying the architecture. However it is possible that
different training methods would be better suited to different networks.

Note that, other than early stopping, no techniques for improved generali-
sation were used. It is likely the addition of either input noise (Section 3.3.2.2)
or weight noise (Section 3.3.2.3) would have lead to better performance.

5.3.1 Retraining

For the experiments with varied time-windows or target delays, we iteratively
retrained the networks, instead of starting again from scratch. For example,
for LSTM with a target delay of 2, we first trained with delay 0, then took
the best network and retrained it (without resetting the weights) with delay 1,
then retrained again with delay 2. To find the best networks, we retrained the
LSTM networks for 5 epochs at each iteration, the RNN networks for 10, and
the MLPs for 20. It is possible that longer retraining times would have given
improved results. For the retrained MLPs, we had to add extra (randomised)
weights from the input layers, since the input size grew with the time-window.

Although primarily a means to reduce training time, we have also found
that retraining improves final performance (Graves et al., 2005a; Beringer, 2004).
Indeed, the best result in this chapter was achieved by retraining (on the BLSTM
network trained with a weighted error function, then retrained with normal
cross-entropy error). The benefits presumably come from escaping the local
minima that gradient descent algorithms tend to get caught in.

The ability of neural networks to benefit from this kind of retraining touches
on the more general issue of transferring knowledge between different tasks
(usually known as transfer learning or meta-learning) which has been widely
studied in the neural network and general machine learning literature (see e.g.
Giraud-Carrier et al., 2004).

5.4 Results

Table 5.1 summarises the performance of the different network architectures.
For the MLP, RNN and LSTM networks we give both the best results, and
those achieved with least contextual information (i.e. with no target delay or
time-window). The complete set of results is presented in Figure 5.2.

The most obvious difference between LSTM and the RNN and MLP networks
was the number of epochs required for training, as shown in Figure 5.3. In
particular, BRNN took more than eight times as long to converge as BLSTM,
despite having more or less equal computational complexity per timestep (see
Section 5.2.1). There was a similar time increase between the unidirectional
LSTM and RNN networks, and the MLPs were slower still (990 epochs for
the best MLP result). A possible explanation for this is that the MLPs and
RNNs require more fine-tuning of their weights to access long range contextual
information.

As well as being faster, the LSTM networks were also slightly more accurate.
However, the final difference in score between BLSTM and BRNN on this task
is quite small (0.8%). The fact that the difference is not larger could mean that
very long time dependencies are not required for this task.
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Figure 5.2: Framewise phoneme classification results on TIMIT. The
number of frames of added context (time-window size for MLPs, target delay
size for unidirectional LSTM and RNNs) is plotted along the x axis. The results
for the bidirectional networks (which don’t require any extra context) are plotted
at x=0.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0  50  100  150  200  250  300  350  400

%
 F

ra
m

es
 C

or
re

ct
ly

 C
la

ss
ifi

ed

Training Epochs

Learning Curves for Three Architectures

BLSTM training set
BLSTM test set

BRNN training set
BRNN test set

MLP training set
MLP test set

Figure 5.3: Learning curves on TIMIT for BLSTM, BRNN and MLP
with no time-window. For all experiments, LSTM was much faster to con-
verge than either the RNN or MLP architectures.
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Table 5.1: Framewise phoneme classification results on TIMIT. The er-
ror measure is the frame error rate (percentage of misclassified frames). BLSTM
results are means over seven runs ± standard error.

Network Train Error (%) Test Error (%) Epochs

MLP (no window) 46.4 48.6 835
MLP (10 frame window) 32.4 36.9 990
RNN (delay 0) 30.1 35.5 120
LSTM (delay 0) 29.1 35.4 15
LSTM (backwards, delay 0) 29.9 35.3 15
RNN (delay 3) 29.0 34.8 140
LSTM (delay 5) 22.4 34.0 35
BLSTM (Weighted Error) 24.3 31.1 15
BRNN 24.0 31.0 170
BLSTM 22.6±0.2 30.2±0.1 20.1±0.5
BLSTM (retrained) 21.4 29.8 17

It is interesting to note how much more prone to overfitting LSTM was than
standard RNNs. For LSTM, after only fifteen to twenty epochs the performance
on the validation and test sets would begin to fall, while that on the training set
would continue to rise (the highest score we recorded on the training set with
BLSTM was 86.4%). With the RNNs on the other hand, we never observed
a large drop in test set score. This suggests a difference in the way the two
architectures learn. Given that in the TIMIT corpus no speakers or sentences
are shared by the training and test sets, it is possible that LSTM’s overfitting
was partly caused by its better adaptation to long range regularities (such as
phoneme ordering within words, or speaker specific pronunciations) than normal
RNNs. If this is true, we would expect a greater distinction between the two
architectures on tasks with more training data.

5.4.1 Previous Work

Table 5.2 shows how BLSTM compares with the best neural network results
previously recorded for this task. Note that Robinson did not quote framewise
classification scores; the result for his network was recorded by Schuster, using
the original software.

Overall BLSTM outperformed all networks found in the literature, apart
from the one described by Chen and Jamieson. However this result is ques-
tionable as a substantially lower error rate is recorded on the test set than on
the training set. Moreover we were unable to reproduce their scores in our own
experiments.

In general it is difficult to compare with previous neural network results
on this task, owing to variations in network training (different preprocessing,
gradient descent algorithms, error functions etc.) and in the task itself (different
training and test sets, different numbers of phoneme labels etc.).
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Table 5.2: Comparison of BLSTM with previous network. The error
measure is the frame error rate (percentage of misclassified frames).

Network Train Error (%) Test Error (%)

BRNN (Schuster, 1999) 17.9 34.9
RNN (Robinson, 1994) 29.4 34.7
BLSTM (retrained) 21.4 29.8
RNN (Chen and Jamieson, 1996) 30.1 25.8

5.4.2 Effect of Increased Context

As is clear from Figure 5.2 networks with access to more contextual information
tended to get better results. In particular, the bidirectional networks were sub-
stantially better than the unidirectional ones. For the unidirectional networks,
LSTM benefited more from longer target delays than RNNs; this could be due
to LSTM’s greater facility with long time-lags, allowing it to make use of the
extra context without suffering as much from having to store previous inputs
throughout the delay.

Interestingly, LSTM with no time delay returns almost identical results
whether trained forwards or backwards. This suggests that the context in both
directions is equally important. Figure 5.4 shows how the forward and backward
layers work together during classification.

For the MLPs, performance increased with time-window size, and it appears
that even larger windows would have been desirable. However, with fully con-
nected networks, the number of weights required for such large input layers
makes training prohibitively slow.

5.4.3 Weighted Error

The experiment with a weighted error function gave slightly inferior framewise
performance for BLSTM (68.9%, compared to 69.7%). However, the purpose of
error weighting is to improve overall phoneme recognition, rather than framewise
classification. As a measure of its success, if we assume a perfect knowledge of
the test set segmentation (which in real-life situations we cannot), and integrate
the network outputs over each phoneme, then BLSTM with weighted errors gives
a phoneme error rate of 25.6%, compared to 28.8% with normal errors.
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Reverse Net Only

Forward Net Only

sil sil f ay vsil w ah n ow

Bidirectional Output

Target

one oh five

sil

Figure 5.4: BLSTM network classifying the utterance “one oh five”.
The bidirectional output combines the predictions of the forward and backward
hidden layers; it closely matches the target, indicating accurate classification. To
see how the layers work together, their contributions to the output are plotted
separately. In this case the forward layer seems to be more accurate. However
there are places where its substitutions (‘w’), insertions (at the start of ‘ow’) and
deletions (‘f’) appear to be corrected by the backward layer. The outputs for
the phoneme ‘ay’ suggests that the layers can work together, with the backward
layer finding the start of the segment and the forward layer finding the end.


