Paper Reading: The Dynamics of AdaBoost: Cyclic Behavior and Convergence of Margins

Nguyen D. Pham

Department of Computer Science University of Houston

November 30, 2015

Introduction

- » AdaBoost: Overfitting?
- » Interesting behavior:
 - After a few iteration, training error reaches zero.
 - Generalization error keeps reducing.
 - \Rightarrow Minimizing error is not the main factor.

Discussion

Introduction AdaBoost Reintroduction Simple Case Generalization

Introduction

AdaBoost Model

- » Training set $\{(\mathbf{x}_i, y_i)\}_{i=1,...,m}$. Labels $y_i \in \{-1, 1\}$. Data space \mathcal{X} .
- » Let $\mathcal{H} = \{h_1, ..., h_n\}$ the set of possible weak classifiers. $h_j : \mathcal{X} \mapsto \{-1, 1\}.$
- » Assumption: ${\cal H}$ is finite and $m \ll n$
- » Matrix $M(m \times n)$, $M_{i,j} = y_i h_j(\mathbf{x}_i)$. Indicating if example \mathbf{x}_i is correctly classified by h_j
- » Weights (normalized) vectors: $\boldsymbol{\lambda} = [\lambda_1, ..., \lambda_n]$ and $\mathbf{d} = [d_1, ..., d_m]$.

AdaBoost Iteration (1)

- » Iterations: $1, ..., t_{max}$.
- » The combined classifier f_{λ} :

$$f_{\boldsymbol{\lambda}} = \frac{\sum_{j=1}^{n} \lambda_j h_j}{\|\boldsymbol{\lambda}\|_1}$$

margin of example *i*: $y_i f_{\lambda}(\mathbf{x}_i) = (\mathbf{M} \boldsymbol{\lambda})_i$

- » Choose either h_j or $-h_j$, the norm 1 is reduced to sum of weights.
- » At iteration t: A classifier h_{j_t} is selected.
 - probability of error $d_{-} = \sum_{i:M_{i,j_t}=-1} d_{t,i}$ and $d_{+} = 1 d_{-}$
 - edge of classifier h_{j_t} : $(\mathbf{d}_t^T \mathbf{M})_{j_t} = d_+ d_-$
 - choose classifier with lowest error:

$$j_t \in \operatorname*{arg\,max}_j (\mathbf{d}_t^T \mathbf{M})_j$$

corresponding edge:
$$r_t$$
 and $d_+ = \frac{1+r_t}{2}$, $d_- = \frac{1-r_t}{2}$

AdaBoost Iteration (2)

- » Each iteration: update ${
 m d}$ and ${m \lambda}$
- » Goal: a combined classifier that maximizes the minimal margin
- » Min-max theorem

$$\max_{\boldsymbol{\lambda}} \min_{i} (\mathbf{M}\boldsymbol{\lambda})_{i} = \min_{\mathbf{d}} \max_{j} (\mathbf{d}^{T}\mathbf{M})_{j}$$

» Reduced to iteration over ${\bf d}$ only

AdaBoost Original Algorithm

» Matrix \mathbf{M} , $\boldsymbol{\lambda}_1 = 0$ » Loop for $t = 1, ..., t_{max}$ • $d_{t,i} = e^{-(\mathbf{M}\boldsymbol{\lambda}_t)_i} / \sum_{k=1}^m e^{-(\mathbf{M}\boldsymbol{\lambda}_t)_k}$ • $j_t \in \arg \max_j (\mathbf{d}_t^T \mathbf{M})_j$ • $r_t = (\mathbf{d}_t^T \mathbf{M})_{j_t}$ • $\alpha_t = 1/2ln \left(\frac{1+r_t}{1-r_t}\right)$ • $\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t + \alpha_t \mathbf{e}_{j_t}$ where \mathbf{e}_{j_t} is 1 at j_t and 0 elsewhere.

» Output $oldsymbol{\lambda}_{t_{max}} / \|oldsymbol{\lambda}_{t_{max}}\|_1$

AdaBoost Reduced to Iterated Map

- » Matrix \mathbf{M} , $_1 = random_v alues$
- » Loop for $t = 1, ..., t_{max}$
 - $j_t \in \arg \max_j (\mathbf{d}_t^T \mathbf{M})_j$

•
$$r_t = (\mathbf{d}_t^T \mathbf{M})_{j_t}$$

• $d_{t+1,i} = \frac{d_{t,i}}{1 + M_{i,j_t} r_t}$

» Output $d_{t_{\mathit{max}}}$

Dynamics of AdaBoost AdaBoost Reintroduction

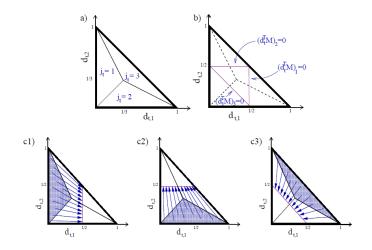
Dynamics of AdaBoost in 3×3 case

$$\mathbf{M} = \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix}$$

- » 3 training examples, 3 classifiers making one mistake each.
- » Result: $\lambda = [1/3, 1/3, 1/3].$
- » Our concern: the dynamics of \mathbf{d}_t .
- » Topology method: $\mathbf{d}_t \in \triangle_3$, a 3-simplex, is projected onto 2-dimensional plane.

Projection

» The system at iteration-t represented by a point $(d_{t,1}, d_{t,2})$



Dynamics of AdaBoost

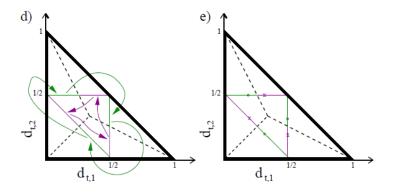
Simple Case

10 / 18

Domains of ${\bf d}$

» \mathbf{d}_t move along the edges of the inner triangle:

 $(\mathbf{d}_{t+1}^T \mathbf{M})_{j_t} = 0$



Dynamics of AdaBoost

Simple Case

11 / 18

Cyclic Behavior

- » Cycle defined by the chosen classifier.
- » Consider some cycle of \mathbf{d}_t , with length $T: d_1^{cyc}, d_2^{cyc}, ..., d_T^{cyc}$.
- » From slide 8, the condition for a cycle is:

$$\prod_{t=1}^{T} (1 + M_{i,j_t} r_t^{cyc}) = 1$$

- » Consider 3-cycles, noting the cyclic permutation, we might have 2 cycles (by index of weak classifiers): (1,2,3) and (1,3,2)
- » Some analysis will yield the solutions (only one is shown):

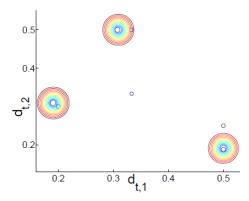
$$\mathbf{d}_{1}^{cyc} = \left(3 - \sqrt{5}/4, \sqrt{5} - 1/4, 1/2\right)^{T} \\ \mathbf{d}_{2}^{cyc} = \left(\sqrt{5} - 1/4, 1/2, 3 - \sqrt{5}/4\right)^{T} \\ \mathbf{d}_{3}^{cyc} = \left(1/2, 3 - \sqrt{5}/4, \sqrt{5} - 1/4\right)^{T}$$

Simple Case

Theorem 1

For the 3×3 matrix ${\bf M}$

- » Weight vectors converge to one of two cycles.
- » The cycles correspond to combined classifier with maximal margin.



Dynamics of AdaBoost

Simple Case

Theorem 2

$$\mathbf{M} = \begin{pmatrix} -1 & 1 & \cdots & 1\\ 1 & -1 & \cdots & 1\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & \cdots & -1 \end{pmatrix}$$

- » AdaBoost converges to at least (m-1)! stable cycles of lenght m.
- » The convergence yields maximum margin.

Generalization

Theorem 3 Manifolds of cycles

- » Consider the matrix **M** with some sets of identical rows: examples that are identically classified by all weak classifiers.
- » If there is a cycle composing identical examples, \overline{I} , with some weight components, then there is another cycle with a pertubation in weights of \overline{I} as long as the sum does not change.

Other results

- » General cases: None of the above results hold.
- » Counter example: AdaBoost does not converge to stable cycle.
- » Counter example: AdaBoost converges, but the margin is not maximized.
- » Which lead to open questions...

Personal View

- » A tough but interesting read.
- » In the end, the results are not generalized: Proof for simple cases (which is complex enough), counter examples for general cases.
- » The topology technique is nice, but might not be useful to generalize.
- » Very nice idea: view AdaBoost as an optimization problem, insight to understanding the algorithm. The reduction to samples weights iteration is very useful.

Thank you! Questions...

Dynamics of AdaBoost

Generalization

