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Outlier Detection via Parsimonious Mixtures

of Contaminated Gaussian Distributions

Antonio Punzo ∗ Paul D. McNicholas †

Abstract

For multivariate continuous data, the contaminated Gaussian distribution — having two param-

eters indicating the proportion of outliers and the degree of contamination — represents a conve-

nient and natural way to model and detect outliers. In this paper, we introduce a mixture model

whereby each mixture component is itself a contaminated Gaussian distribution. To introduce par-

simony, a family of fourteen mixtures of contaminated Gaussian distributions is developed by ap-

plying constraints to eigen-decomposed component covariance matrices. This approach is, amongst

other things, an effective alternative to trimmed clustering. Although these models could be used

for model-based clustering, classification, and discriminant analysis, we focus on the more general

model-based classification framework. An expectation-conditional maximization algorithm is used

to find maximum likelihood estimates of the parameters and thereby give classifications for the ob-

servations. A simulation study is performed to evaluate the behaviour of the Bayesian information

criterion and the integrated completed likelihood in model selection. This novel family of models

is applied to artificial and real data in order to illustrate some of its advantages. Amongst them,

and in contrast to the trimmed clustering approach, we have: 1) each observation has a posterior

probability of belonging to a particular group and, inside each group, of being an outlier or not, 2)

the models do not require pre-specification of quantities such as the proportion of observations to

trim, 3) the approach can be easily used in high dimensions, and 4) model-based classification is

permitted in addition to clustering.
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1 Introduction

Finite mixtures of distributions are commonly employed in statistical modelling with two different pur-

poses (Titterington et al., 1985, pp. 2–3). In indirect applications, they are used as semiparametric

competitors of nonparametric density estimation techniques (see Titterington et al., 1985, pp. 28–29,

McLachlan and Peel, 2000, p. 8, and Escobar and West, 1995). On the other hand, in direct applications,

finite mixture models are considered as a powerful device for clustering, classification, and discriminant

analysis by assuming that one or more mixture components represent a group (or class or cluster) within

the original data (see McLachlan and Basford, 1988 and Fraley and Raftery, 1998).

For continuous multivariate random variables, attention is commonly focused on mixtures of Gaussian

distributions because of their computational and theoretical convenience. Unfortunately, real data are

often “contaminated” by outliers that affect the estimation of the component means and covariance

matrices (see, e.g., Bock, 2002). Thus, the detection of these outliers, and the development of robust

methods of parameter estimation insensitive to the presence of outliers, are important practical problems.

Following Gallegos and Ritter (2009), the mixture modelling literature on this topic can be summarized

as follows (for the alternative trimmed clustering approach see, e.g., Garćıa-Escudero et al., 2008, 2010).

1. Campbell (1984), McLachlan and Basford (1988, Section 2.8), and De Veaux and Krieger (1990)

use M-estimates of the means and covariance matrices of the Gaussian components of the mixture

model.

2. McLachlan and Peel (1998) and Peel and McLachlan (2000) introduce mixtures of t-distributions

(see also Greselin and Ingrassia, 2010 and Andrews and McNicholas, 2011).

3. Fraley and Raftery (2002) add, to the mixture of Gaussian distributions, a uniform component on

the convex hull of the data in order to accommodate outliers.

The performance of these aforementioned methods is analyzed in Hennig (2004).

4. Browne et al. (2012) introduce a mixture model whereby each mixture component is itself a mixture

of a Gaussian and a uniform distribution.

However, these mixture-based approaches have some drawbacks. In direct applications, the first two

methods do not allow for the direct detection of outliers. The approaches considering the uniform

distribution, if used for discriminant analysis, cannot recognize a new noisy observation (an observation

that has not been used to fit the model) if it lies outside the support defined by the fitted uniform

distribution(s); this is paradoxical because the new observation should be the strongest available outlier

in the philosophy of the corresponding model. Finally, in indirect applications, mixtures having one or

2



more uniform distributions do not provide an overall smooth density, which is a fundamental requirement

in the nonparametric paradigm (Silverman, 1981).

To overcome these problems, a mixture of contaminated Gaussian distributions is proposed in Sec-

tion 2.1. A contaminated Gaussian distribution is a two-component Gaussian mixture in which one

of the components, with a large prior probability, represents the “good” observations, and the other,

with a small prior probability, the same mean, and an inflated covariance matrix, represents the “bad”

observations (Aitkin and Wilson, 1980). It represents a common and simple theoretical model for the

occurrence of outliers. Furthermore, parsimonious variants of the proposed model are introduced in

the fashion of Celeux and Govaert (1995) by imposing constraints on eigen-decomposed component co-

variance matrices (Section 2.2). The most general model-based classification framework is considered

(Section 2.3) and an expectation-conditional maximization (ECM) algorithm for parameter estimation is

outlined (Section 3). Further computational/operational aspects are detailed in Section 4. In Section 5,

the Bayesian information criterion (BIC; Schwarz, 1978) and the integrated completed likelihood (ICL;

Biernacki et al., 2000) are compared for model selection for our novel family of mixtures of contami-

nated Gaussian distributions. Applications on artificial and real data are presented in Section 6 and

a comparison with trimmed clustering, as implemented in the tclust package (Fritz et al., 2012) of R

(R Core Team, 2013), is discussed in Section 7.

2 Methodology

2.1 The general model

The distribution of a p-variate random vector X, according to a parametric finite mixture model with k

components, can be written as

p (x;Ψ) =

k∑

j=1

πjf (x;ϑj) , (1)

where πj is the weight (mixing proportion) of the jth component, with πj > 0 and
∑k

j=1 πj = 1, f (x;ϑj)

is the parametric (with respect to ϑj) distribution associated with the jth component, and Ψ = {π,ϑ},

with π = {πj}kj=1 and ϑ = {ϑj}kj=1, contains all of the parameters of the mixture. As usual, model (1)

implicitly assumes that the component distributions should all belong to the same parametric family.

In this paper, as component density in (1), we adopt the contaminated Gaussian distribution

f (x;ϑj) = αjφ
(
x;µj ,Σj

)
+ (1− αj)φ

(
x;µj , ηjΣj

)
,
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where αj ∈ [0, 1], ηj > 0, ϑj =
{
αj ,µj ,Σj , ηj

}
, and

φ (x;µ,Σ) = (2π)−
p

2 |Σ|−
1
2 exp

{
−1

2
δ (x,µ;Σ)

}
(2)

is the distribution of a p-variate Gaussian random vector with mean µ and covariance matrix Σ. In (2),

δ (x,µ;Σ) = (x− µ)′ Σ−1 (x− µ)

denotes the Mahalanobis distance between x and µ with covariance matrix Σ. The result is the mixture

of contaminated Gaussian distributions, given by

p (x;Ψ) =
k∑

j=1

πj

[
αjφ

(
x;µj ,Σj

)
+ (1− αj)φ

(
x;µj , ηjΣj

)]
, (3)

where Ψ = {π,α,ϑ}, with α = {αj}kj=1. Previous work on mixtures of Gaussian mixtures can be found,

for example, in Orbanz and Buhmann (2005) and Di Zio et al. (2007).

2.2 Parsimonious variants of the general model

Because there are p (p+ 1) /2 free parameters for each Σj , it is usually necessary to introduce parsimony

into the general model (3) for real applications. To this end, and following Celeux and Govaert (1995),

we consider the eigen decomposition

Σj = λjΓj∆jΓ
′

j , j = 1, . . . , k, (4)

where λj = |Σj |1/p, ∆j is the scaled (|∆j | = 1) diagonal matrix of the eigenvalues of Σj sorted in

decreasing order, and Γj is a p× p orthogonal matrix whose columns are the normalized eigenvectors of

Σj , ordered according to their eigenvalues. Each component in the right side of (4) also has a different

geometric interpretation: λj determines the volume of the cluster, ∆j its shape, and Γj its orientation.

The constraints we impose on the three components of (4) generate the family of fourteen parsimo-

nious mixtures of contaminated Gaussian distributions (PMCGD) models summarized in Table 1. The

same constraints are also applied by Celeux and Govaert (1995) to the classical mixtures of Gaussian

distributions; the result is the well-known family of Gaussian parsimonious clustering (GPC) models.

As shown in the first column of Table 1, the family of fourteen models can be further split into three

subfamilies: spherical, diagonal, and general.
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Table 1: Nomenclature, covariance structure, type of ML solution in the first CM-step of the ECM
algorithm (CF=closed form and IP=iterative procedure), and number of free covariance parameters for
each member of the PMCGD family.

Family Model Volume Shape Orientation Σj ML Free covariance parameters

Spherical EII Equal Spherical - λI CF 1
VII Variable Spherical - λjI CF k

Diagonal EEI Equal Equal Axis-Aligned λ∆ CF p
VEI Variable Equal Axis-Aligned λj∆ IP k + p− 1
EVI Equal Variable Axis-Aligned λ∆j CF 1 + k (p− 1)
VVI Variable Variable Axis-Aligned λj∆j CF kp

General EEE Equal Equal Equal λ∆Γ∆′ CF p (p+ 1) /2
VEE Variable Equal Equal λj∆Γ∆′ IP k + p− 1 + p (p− 1) /2
EVE Equal Variable Equal λ∆jΓ∆

′

j IP 1 + k (p− 1) + p (p− 1) /2
EEV Equal Equal Variable λ∆Γj∆

′ CF p+ kp (p− 1) /2
VVE Variable Variable Equal λj∆jΓ∆

′

j IP kp+ p (p− 1) /2
VEV Variable Equal Variable λj∆Γj∆

′ IP k + p− 1 + kp (p− 1) /2
EVV Equal Variable Variable λ∆jΓj∆

′

j CF 1 + k (p− 1) + kp (p− 1) /2
VVV Variable Variable Variable λj∆jΓj∆

′

j CF kp (p+ 1) /2

2.3 Modelling framework: model-based classification

Model-based classification is receiving renewed attention (see, e.g., Dean et al., 2006, McNicholas, 2010,

Andrews et al., 2011, Browne and McNicholas, 2012a, and Subedi et al., 2013). However, despite being

the most general framework within which to present and analyze direct applications of mixture models,

it remains the “poor cousin” of model-based clustering within the literature.

Consider n observations {xi}ni=1 of which, without loss of generality, are ordered so that the first

m are known to belong to one of k groups; these are the so-called labeled observations. Let zi be the

k-dimensional component-label vector in which the jth element zij = 1 if xi belongs to component j

and zij = 0 otherwise, j = 1, . . . , k. If the ith observation is labeled, denote with z̃i = (z̃i1, . . . , z̃ik)
′

its

component-membership indicator.

In model-based classification, we use all n observations to estimate the parameters of the mixture; the

fitted model is so adopted to classify each of the n−m unlabelled observations through the corresponding

maximum a posteriori (MAP) probability. We obtain the model-based clustering scenario as a special

case when m = 0. In discriminant analysis, we use only the m labeled observations to estimate the

parameters of the mixture; the fitted model is then adopted to classify, using the MAP criterion, each

of the n−m unlabelled observations.

3 Maximum likelihood estimation

To fit the PMCGD models, we adopt the ECM algorithm of Meng and Rubin (1993), a variant of the

classical expectation-maximization (EM) algorithm (Dempster et al., 1977) that is a natural approach
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for maximum likelihood (ML) estimation when data are missing. In our case, there are two sources of

missing data: one arises from the fact that we do not know some of the group memberships, that is, we

do not know zi for i = m + 1, . . . , n; the other arises from the fact that we do not know whether an

observation in group j is “good” or “bad”. To denote this second source of missing data, we introduce

vij so that vij = 1 if observation i in group j is “good”, and vij = 0 if observation i in group j is

“bad”. Thus, with Sl = {xi, z̃i,vi}mi=1 and Su = {xi, zi,vi}ni=m+1 we denote the labeled complete-data

and the unlabeled complete-data, respectively. The complete-data are so indicated with S = {Sl,Su}.

Accordingly, the complete-data log-likelihood, lc (Ψ|S), can be decomposed as

lc (Ψ|S) = l1c (π|S) + l2c (α|S) + l3c (ϑ|S) , (5)

where

l1c (π|S) = l1cl (π|Sl) + l1cl (π|Su) , (6)

l2c (α|S) = l2cl (α|Sl) + l2cu (α|Su) , (7)

and

l3c (ϑ|S) = l3cl (ϑ|Sl) + l3cu (ϑ|Su) . (8)

The quantities in (6), (7), and (8) are defined as

l1cl (π|Sl) =

m∑

i=1

k∑

j=1

z̃ij lnπj ,

l1cu (π|Su) =

n∑

i=m+1

k∑

j=1

zij lnπj , (9)

l2cl (α|Sl) =

m∑

i=1

k∑

j=1

z̃ij [vij lnαj + (1− vij) ln (1− αj)] , (10)

l2cu (α|Su) =
n∑

i=m+1

k∑

j=1

zij [vij lnαj + (1− vij) ln (1− αj)] , (11)

l3cl (ϑ|Sl) = −1

2

m∑

i=1

k∑

j=1

{
z̃ij ln |Σj |+ pz̃ij (1− vij) ln ηj + z̃ij

(
vij +

1− vij
ηj

)
δ
(
xi,µj ;Σj

)
}
, (12)

and

l3cu (ϑ|Su) = −1

2

n∑

i=m+1

k∑

j=1

{
zij ln |Σj |+ pzij (1− vij) ln ηj + zij

(
vij +

1− vij
ηj

)
δ
(
xi,µj;Σj

)
}
. (13)
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The ECM algorithm iterates between three steps — an E-step and two CM-steps — until convergence.

The only difference from the EM algorithm is that each M-step is replaced by two simpler CM-steps.

They arise from the partition Ψ = {Ψ1,Ψ2}, where Ψ1 =
{
πj , αj ,µj ,Σj

}k
j=1

and Ψ2 = {ηj}kj=1.

3.1 Model VVV

Here, we detail the ECM algorithm for the most general PMCGD model, i.e., the VVV model (3).

3.1.1 E-step

The E-step, on the (r + 1)th iteration of the ECM algorithm requires the calculation of Q
(
Ψ|Ψ(r)

)
,

the current conditional expectation of lc (Ψ|S). In order to do this, we need to calculate E
Ψ(r) (Zij |xi),

for i = m+ 1, . . . , n and j = 1, . . . , k, and E
Ψ(r) (Vij |xi, zi), for i = 1, . . . , n and j = 1, . . . , k. They are

given by

E
Ψ(r) (Zij |xi) = z

(r)
ij =

π
(r)
j f

(
xi;ϑ

(r)
j

)

p
(
xi;Ψ

(r)
)

and

E
Ψ(r) (Vij |xi, zi) = v

(r)
ij =

α
(r)
j φ

(
xi;µ

(r)
j ,Σ

(r)
j

)

f
(
xi;ϑ

(r)
j

) ,

respectively. Then, by substituting zij with z
(r)
ij in (9), (11), and (13), vij with v

(r)
ij in (10), (11), (12),

and (13), and putting them together in (5), we obtain Q
(
Ψ|Ψ(r)

)
.

3.1.2 CM-step 1

The first CM-step on the (r + 1)th iteration of the ECM algorithm requires the calculation of Ψ
(r+1)
1 as

the value of Ψ1 that maximizes Q
(
Ψ|Ψ(r)

)
with Ψ2 fixed at Ψ

(r)
1 . In particular, we obtain

π
(r+1)
j =

n
(r)
j

n
,

α
(r+1)
j =

1

n
(r)
j

(
m∑

i=1

z̃ijv
(r)
ij +

n∑

i=m+1

z
(r)
ij v

(r)
ij

)
, (14)

µ
(r+1)
j =

1

s
(r)
j

[
m∑

i=1

z̃ij

(
v
(r)
ij +

1− v
(r)
ij

η
(r)
j

)
xi +

n∑

i=m+1

z
(r)
ij

(
v
(r)
ij +

1− v
(r)
ij

η
(r)
j

)
xi

]
,

and

Σ
(r+1)
j =

1

n
(r)
j

W
(r)
j ,
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where

n
(r)
j =

m∑

i=1

z̃ij +

n∑

i=m+1

z
(r)
ij ,

s
(r)
j =

m∑

i=1

z̃ij

(
v
(r)
ij +

1− v
(r)
ij

η
(r)
j

)
+

n∑

i=m+1

z
(r)
ij

(
v
(r)
ij +

1− v
(r)
ij

η
(r)
j

)
,

and

W
(r+1)
j = W

(r+1)
j,l +W

(r+1)
j,u

with

W
(r+1)
j,l =

m∑

i=1

z̃ij

(
v
(r)
ij +

1− v
(r)
ij

η
(r)
j

)(
xi − µ

(r+1)
j

)(
xi − µ

(r+1)
j

)
′

and

W
(r+1)
j,u =

n∑

i=m+1

z
(r)
ij

(
v
(r)
ij +

1− v
(r)
ij

η
(r)
j

)(
xi − µ

(r+1)
j

)(
xi − µ

(r+1)
j

)
′

.

Given η
(r)
j > 1, in updating µj and Σj the observations are downweighted in line with (1 − v

(r)
ij ); see

Little (1988) for a discussion on downweighting for the contaminated Gaussian distribution. This is an

important aspect for robust estimation of µj and Σj .

3.1.3 CM-step 2

The second CM-step on the (r + 1)th iteration of the ECM algorithm requires the calculation of Ψ
(r+1)
2

as the value of Ψ2 that maximizes Q
(
Ψ|Ψ(r)

)
with Ψ1 fixed at Ψ

(r+1)
1 . In particular, we have to

maximize

−p

2

m∑

i=1

z̃ij

(
1− v

(r)
ij

)
ln ηj −

p

2

n∑

i=m+1

z
(r)
ij

(
1− v

(r)
ij

)
ln ηj

−1

2

m∑

i=1

z̃ij
1− v

(r)
ij

ηj
δ
(
xi,µ

(r+1)
j ;Σ

(r+1)
j

)

−1

2

n∑

i=m+1

z̃
(r)
ij

1− v
(r)
ij

ηj
δ
(
xi,µ

(r+1)
j ;Σ

(r+1)
j

)

(15)

with respect to ηj , j = 1, . . . , k. The updated estimate of ηj , which exists in closed form, is given by

η
(r+1)
j =

m∑

i=1

z̃ij

(
1− v

(r)
ij

)
δ
(
xi,µ

(r+1)
j ;Σ

(r+1)
j

)

p

m∑

i=1

z̃ij

(
1− v

(r)
ij

) +

n∑

i=m+1

z
(r)
ij

(
1− v

(r)
ij

)
δ
(
xi,µ

(r+1)
j ;Σ

(r+1)
j

)

p

n∑

i=m+1

z
(r)
ij

(
1− v

(r)
ij

) ,

which, by definition, is a positive quantity.
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3.2 Parsimonious models

The ECM algorithm for the other PMCGD models changes only with respect to the way the terms of

the decomposition of Σj are obtained in the first CM-step. In particular, these updates are analogous

to those given by Celeux and Govaert (1995) for the GPC models; the only difference is that, on the

(r + 1)th iteration of the algorithm, W
(r+1)
j is used instead of the classical scattering matrix

m∑

i=1

z̃ij

(
xi − µ

(r+1)
j

)(
xi − µ

(r+1)
j

)
′

+

n∑

i=m+1

z
(r)
ij

(
xi − µ

(r+1)
j

)(
xi − µ

(r+1)
j

)
′

.

4 Further aspects

Code for the ECM algorithm was written in the R computing environment. We used the recent mixture

package (Browne and McNicholas, 2013b), which gives a flexible implementation of the EM algorithm

for the GPC models, as a basis to implement this code. The mixture differs from the Rmixmod package

(Biernacki et al., 2008 and Lebret et al., 2012) with respect to the algorithm used in the M-step to

estimate parameters for the EVE and VVE models. In particular, the Rmixmod package adopts the

classical FG-algorithm of Flury and Gautschi (1986) while the mixture package uses the majorization-

minimization (MM) algorithm of Browne and McNicholas (2013a), which is preferable especially in high

dimensions. For the alternative use of accelerated line search (ALS) algorithms to solve the same problem,

see Browne and McNicholas (2012b).

4.1 Initialization

The choice of the starting values for the ECM algorithm constitutes an important issue. The stan-

dard initialization consists of selecting a value for Ψ(0). In particular, a random initialization is usu-

ally repeated t times, from different random positions, and the solution maximizing the observed-data

log-likelihood among these t runs is selected (see Biernacki et al. 2003, Karlis and Xekalaki 2003, and

Bagnato and Punzo, 2012 for other more complicated strategies).

Instead of selecting Ψ(0) randomly, we suggest the following technique. Each GPC model can be

seen as nested in the corresponding PMCGD model. In particular, each GPC model can be obtained

from the corresponding PMCGD model by fixing αj = 1 and/or ηj = 1, j = 1, . . . , k; thus, with these

constraints, the VEV-PMCGD and the VEV-GPC model are equivalent. Then, the EM estimates of the

parameters for each GPC model — obtained with the gpcm() function of mixture package — along with

the constraint αj = ηj = 1, j = 1, . . . , k, can be used to initialize the corresponding PMCGD model.

From an operational point of view, thanks to the monotonicity property of the ECM algorithm (see,
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e.g., McLachlan and Krishnan, 2007, p. 33) this also guarantees that the observed-data log-likelihood

of a PMCGD model will be always greater than or equal to the observed-data log-likelihood of the

corresponding GPC model. This is a fundamental consideration for the use of likelihood-based model

selection criteria for choosing between a PMCGD model and the corresponding GPC model.

4.2 Convergence criterion

The Aitken acceleration (Aitken, 1926) is used to estimate the asymptotic maximum of the log-likelihood

at each iteration of the ECM algorithm. Based on this estimate, we can decide whether or not the

algorithm has reached convergence; i.e., whether or not the log-likelihood is sufficiently close to its

estimated asymptotic value. The Aitken acceleration at iteration r + 1 is given by

a(r+1) =
l(r+2) − l(r+1)

l(r+1) − l(r)
,

where l(r+2), l(r+1), and l(r) are the observed-data log-likelihood values from iterations r+ 2, r+ 1, and

r, respectively. Then, the asymptotic estimate of the log-likelihood at iteration r + 2 is given by

l(r+2)
∞

= l(r+1) +
1

1− a(r+1)

(
l(r+2) − l(r+1)

)
,

cf. Böhning et al. (1994). The ECM algorithm can be considered to have converged when l
(r+2)
∞ −l(r+1) <

ǫ (see Lindsay, 1995 and McNicholas et al., 2010).

4.3 Automatic detection of outliers

For a PMCGD model, the classification of an observation xi means:

step 1. determine its group of membership;

step 2. establish if it is either a “good” or a “bad” observation in that group.

Let ẑi and v̂i denote, respectively, the expected values of zi and vi arising from the ECM algorithm.

Then, to evaluate the group of membership of xi, i = m + 1, . . . , n, we can use the MAP classification

induced by

MAP (ẑij) =





1 if maxh {ẑih} occurs at component j

0 otherwise.

Analogously, to detect if xi, i = 1, . . . , n, is “good” or “bad”, we can compute MAP (v̂ij), with j such

that MAP (ẑij) = 1. The resulting information can be used to eliminate the outliers, if such an outcome

10



is desired (Berkane and Bentler, 1988). The remaining data may then be treated as effectively being

distributed according to a mixture of Gaussian distributions.

4.4 Constraints for detection of outliers

When the PMCGD models are used for detection of outliers in each group, (1− αj) should represent the

percentage of outliers and ηj should denote the degree of contamination. Then, for the latter parameter,

we could prefer the assumption ηj > 1 so that ηj can be meant as the increase in variability due to

the “bad” observations (i.e., an inflation parameter). Operationally, on the (r + 1)th iteration of the

first CM-step, the optim() function, of the stats package of R, is used for a numerical search of the

maximum η
(r+1)
j of (15) over the interval (1, η∗), with η∗ > 1. In the analyses of Section 6, we fix

η∗ = 1000 in order to facilitate faster convergence. Furthermore, one could require that in the jth group,

j = 1, . . . , k, the proportion of “good” data is at least equal to a pre-determined value α∗

j (e.g., we might

set α∗

j = 0.5). In this case, the optim() function is also used for a numerical search of the maximum

α
(r+1)
j , over the interval (α∗

j , 1), of the function

m∑

i=1

z̃ij

[
v
(r)
ij lnαj +

(
1− v

(r)
ij

)
ln (1− αj)

]
+

n∑

i=m+1

z
(r)
ij

[
v
(r)
ij lnαj +

(
1− v

(r)
ij

)
ln (1− αj)

]
. (16)

The function in (16) has already been used to obtain the updates of αj in (14). Finally, to simplify

parameter estimation, αj and/or ηj may be fixed a priori by the user. With reference to αj , this does

not represent a strong restriction if one thinks that the trimmed clustering approach, for the detection of

outliers, typically requires one to specify the proportion of outliers (the so-called trimming proportion)

in advance (see, e.g., Fritz et al., 2012).

5 Model selection

5.1 Model selection criteria

The PMCGD models, in addition to Ψ, are also characterized by the particular covariance structure and

by the number of components k. So far, these quantities have been treated as a priori fixed. Nevertheless,

for practical purposes, model selection is usually required. One way to perform model selection is via

computation of a convenient (likelihood-based) model selection criterion across all fourteen models and

over a reasonable range of values for k, and then choosing the model associated with the best value of

the adopted criterion.
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The BIC is by far the most popular such criterion within the literature to date. We have

BIC = 2l
(
Ψ̂
)
− ρ lnn, (17)

where ρ is the overall number of free parameters in the model. One alternative that has been used by

several authors of late (e.g., McNicholas and Subedi, 2012) is the ICL, given by

ICL ≈ BIC +

n∑

i=m+1

k∑

j=1

MAP(ẑij) ln ẑij , (18)

where
∑n

i=m+1

∑k
j=1 MAP(ẑij) ln ẑij is the estimated mean entropy, which reflects the uncertainty in

the classification of observation i into component j.

5.2 Comparing the BIC and the ICL

We present here the results of a simulation study implemented in R with the aim of comparing the

performance of the BIC and the ICL for PMCGD model selection. Because many factors come into play

(e.g., the number of components k, the dimension p of the observed variables, the overall sample size n,

the number m of labeled observations), some of them are necessarily considered fixed for our purposes.

5.2.1 Design

One-hundred data sets are generated from each model in our family. We fix: p = 2, k = 2, n = 300,

π1 = π2 = 0.5, α1 = α2 = 0.9, η1 = η2 = 10, and µ1 = 0. With regard to the remaining parameters of

the PMCGD models, in the bivariate case we have

Σj = λjΓj∆jΓ
′

j = λjR (γj)



1/δj 0

0 δj


R (γj)

′

, (19)

where

R (γj) =



cos γj − sin γj

sin γj cos γj




is the rotation matrix of angle γj, and δj ∈ (0, 1]. Note that the elements in the shape matrix arise

from the constraint |∆j | = 1. Hence, we have a single parameter for each component of the eigen-

decomposition: λj is the volume parameter, δj is the shape parameter, and γj is the orientation parameter

(see Greselin and Punzo, 2013, for further details). To generate data from each model, we preliminarily

set Σ1 according to the subfamilies in Table 1. In particular we consider: λ1 = 1, δ1 = 1, and γ1 = 0 (0◦

12



in degrees) for the spherical family, λ1 = 1, δ1 = 0.7, and γ1 = 0 for the diagonal family, and λ1 = 1, δ1 =

0.7, and γ1 = π/6 (30◦ in degrees) for the general family. With regard toΣ2 we choose: λ2 = 3 for models

with variable volume, δ2 = 0.3 for models with variable size, and γ2 = π/6 + π/4 (30◦ + 45◦ in degrees)

for models with variable orientation. In order to make a fair comparison in clustering/classification

terms among these different configurations, the second variate µ22 of µ2 = (0, µ22)
′ is computed, via a

numerical procedure, to guarantee a fixed overlap between the good observations of the two groups. In

line with Bagnato et al. (2013), we adopt the well-known measure of overlap of Bhattacharyya (1943),

B =
1

8
δ (µ1,µ2;Σ) +

1

2
ln

( |Σ|√
Σ1 +Σ2

)
,

with Σ = (Σ1 +Σ2) /2, which takes values between 0 (absence of overlap) and 1 (maximum overlap).

In particular, we consider four scenarios: B = 0.05, B = 0.15, B = 0.25, and B = 0.35. Finally, two

values for the number m of unlabeled observations are also used: m = 0 and m = 50. In the latter

case, fifty numbers are randomly generated, without replacement, from the set {1, . . . , 300} and then

used as indicators of the observations to consider as labeled (using the true labels for them). All eight

combinations of the factors B and m are taken into account in the simulations.

5.2.2 Results

Table 2 shows the percentage of times the BIC and the ICL discover the true generating model in the

corresponding column. Note that, in each replication, the fourteen models of the PMCGD family are

Table 2: Percentage of times the BIC and the ICL select the true PMCGD model in the corresponding
column.

EII VII EEI VEI EVI VVI EEE VEE EVE EEV VVE VEV EVV VVV mean

m = 0 B = 0.05 BIC 96 91 96 93 96 93 90 81 95 63 94 75 89 87 88.50
ICL 94 91 95 94 97 93 89 84 94 66 95 76 90 86 88.86

B = 0.15 BIC 96 87 95 81 95 93 84 75 95 56 94 56 87 80 83.86
ICL 92 88 93 79 93 93 86 87 92 54 96 51 88 83 83.93

B = 0.25 BIC 97 87 83 81 93 89 67 68 97 44 90 49 84 71 78.57
ICL 86 83 79 82 93 88 70 72 90 42 91 32 85 72 76.07

B = 0.35 BIC 95 82 55 72 90 88 51 59 91 38 81 27 77 68 69.57
ICL 59 73 56 65 72 74 56 58 72 25 76 12 73 51 58.71

m = 50 B = 0.05 BIC 87 95 97 86 97 91 97 86 96 56 97 79 86 82 88.00
ICL 88 95 95 85 97 91 97 89 96 58 97 82 87 84 88.64

B = 0.15 BIC 94 95 97 85 93 93 90 82 93 48 97 60 82 80 84.93
ICL 94 96 94 89 93 93 93 90 94 55 97 59 83 85 86.79

B = 0.25 BIC 96 94 89 94 97 96 79 79 90 56 95 60 84 80 84.93
ICL 95 92 91 89 95 92 88 81 94 56 90 53 88 84 84.86

B = 0.35 BIC 93 90 89 83 93 94 71 77 95 52 94 58 82 83 82.43
ICL 87 85 88 79 89 94 81 71 94 48 91 45 87 83 80.14

directly fitted with k = 2. The last column of Table 2 helps us to view the overall results by showing
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the means of the percentages computed by row. We can see that, apart from the pair (m = 0, B = 0.35),

where the BIC outperforms the ICL, the performance of the two model selection criteria is similar.

This similarity is also corroborated by the overall mean of 82.60% for the BIC and 81.00% for the ICL.

Furthermore, we can see that the behavior of the BIC and the ICL deteriorates with the increase in B

when m = 0, while it remains more stable with the increase in B when m = 50; this means that, as

expected, knowledge of the labels for some of the observations helps the BIC and the ICL in discovering

the true model in situations of increasing overlap between groups. It is also interesting to note that, for

some models such as the EEV and the VEV, the considerable overlap between groups makes assessment

of the true model challenging. In summary, it is difficult to establish the best model selection criteria

among those considered; thus, we will use both in the data analysis presented in Section 6.

6 Data analysis

In this section, we will evaluate the performance of the PMCGD models on artificial and real data sets.

Particular attention will be devoted to the problem of detecting outliers.

6.1 Artificial data: overall uniform noise

In this first analysis, a sample of n = 180 simulated bivariate points is generated from an EVE-GPC

model with k = 2 components of equal size (n1 = n2 = 90). The parameters of the mixture components

are given in Table 3. Twenty noise points are also added from a uniform distribution over the range −10

Table 3: Means and components of the eigen decompostion in (4) for the EVE-GPCmodel of Section 6.1.

Group 1 Group 2

µ1 =

(
−2

−2

)
µ1 =

(
2

2

)

λ1 = 1 λ2 = 1

∆1 =

(
1/0.7 0

0 0.7

)
∆2 =

(
1/0.3 0

0 0.3

)

Γ1 =

(√
3/2 1/2

−1/2
√
3/2

)
Γ2 =

(√
3/2 1/2

−1/2
√
3/2

)

to 10 on each variate. The true grouping is shown in Figure 1.

We now consider the results obtained by fitting the family of GPC models. With this aim, the gpcm()

function, of the mixture package for R, is used. When k = 2, the best GPC model according to the BIC
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Figure 1: Scatter plot and true ellipses of equal (95%) concentration of the “uniform-contaminated”
EVE-GPC model of Section 6.1. Uniform noise points are denoted by •.

(−1957.293) is VII while according to the ICL (−1960.651) is VEE. These two models are displayed in

Figure 2(a) and Figure 2(b), respectively. As expected, these models are affected by noise. When k = 3,
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(a) VII - best BIC when k = 2
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(b) VEE - best ICL when k = 2
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(c) VVE - best BIC and ICL when k =
3

Figure 2: Scatter plots and ellipses of equal (95%) concentration of some GPC models fitted on the
simulated data of Section 6.1.

the best GPC model according to both the BIC (−1729.945) and the ICL (−1736.400) is the VVE in

Figure 2(c). Obviously, the additional third component is attempting to model the background noise.

However, this attempt affects the detection of the underlying EVE model.

On the contrary, by fitting our family of models with k = 2, the best model according to both the

BIC (−1729.442) and the ICL (−1735.658) is the true one, with corresponding clustering represented in

Figure 3. It compares very well with the true grouping (Figure 1). In particular, from the clustering

results of Table 4, we can see that the model recognizes 18 out of 20 noise observations. Finally, note

15



−10 −5 0 5 10

−
10

−
5

0
5

10

X1

X
2

Figure 3: Scatter plot and ellipses of equal (95%) concentration of the EVE-PMCGD model fitted on
the simulated data of Section 6.1. Detected outliers are denoted with bullets.

that among the BIC and ICL values seen so far, the highest ones refer to the EVE-PMCGD model,

which represents the best model from this point of view as well.

Table 4: Clustering from the EVE-PMCGD model for the artificial data of Section 6.1.
P
P
P
P
P
P
PP

True
Fitted

Group 1 Group 2 Noise

Group 1 90 – –
Group 2 – 90 –
Noise 1 1 18

6.2 Real data: geyser2 data set

The second analysis considers the Old Faithful Geyser data set, which contains 272 observation of

eruption length (see, e.g., Azzalini and Bowman, 1990). In line with Garćıa-Escudero et al. (2003) and

Fritz et al. (2012), a bivariate data set can be constructed considering the eruption lengths and the cor-

responding previous eruption lengths. This data set, named geyser2, accompanies the tclust package

for R.

In Fritz et al. (2012), the number of groups is fixed to k = 3 and a pre-assigned proportion 0.03 of the

data is trimmed. Following this road, we fix k = 3 and αj = 0.95, j = 1, 2, 3. The best PMCGD model,

according to both the BIC (−1113.730) and the ICL (−1121.339), is VII, with corresponding clustering

displayed in Figure 4. Among the detected outliers, we can see six anomalous “short followed by short”

eruption lengths. Notice that two other observations are detected as noise, one of which is situated
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Figure 4: Scatter plot and ellipses of equal (95%) concentration of the VVI-PMCGD model fitted to the
geyser2 data set. Detected outliers are denoted with bullets.

between the two clusters on the right. Contrary to what one might expect, this analysis underlines that

the PMCGD models, in addition to being able to find surrounding noisy data as in Section 6.1, can also

detect outliers when they are located in a “separated” part of the space.

6.3 Real data: blue crab data set

The third analysis is based on the very popular crab data set of Campbell and Mahon (1974). Attention

is focused on the sample of n = 100 blue crabs of the genus Leptograpsus, of which there are n1 = 50

males (group 1) and n2 = 50 females (group 2). For each specimen, we consider p = 2 measurements (in

millimeters), namely the rear width (RW) and the length along the midline of the carapace (CL). The

scatter plot of these data is shown in Figure 5.

Following the scheme of Peel and McLachlan (2000), eight “perturbed” data sets are generated by

substituting the original value of CL for the 25th point (highlighted by a yellow bullet in Figure 5) with

eight atypical values. The aim of Peel and McLachlan (2000) was to show that the t mixture-based

clustering is robust to these perturbations unlike Gaussian mixture-based clustering. Here, we will show

that our approach to clustering systematically outperforms the t mixture-based approach.

Ceteris paribus with the two approaches considered in Peel and McLachlan (2000), we will directly

fit the VVV-PMCGD model with k = 2. For each of the three competing techniques, Table 5 reports

the number of misallocated observations for each perturbed data set. Results for the Gaussian mixture

and the t mixture are taken from Peel and McLachlan (2000, Table 1). It can be seen that the VVV-

PMCGD model is systematically the most robust to these perturbations, with the number of misallocated
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Figure 5: Scatter plot of the blue crab data (◦ denotes male and • female; • denotes the observation
perturbed for the analysis of Section 6.3).

Table 5: Number of misallocated blue crabs (n = 100), with respect to gender, for three model-based
approaches to clustering. The last column reports the estimated value of the inflation parameter η in
the group containing the outlier.

Value
GPC
(VVV)

t mixture
PMCGD
(VVV)

η̂

-15 49 19 13 480.062
-10 49 19 13 386.877
-5 21 20 13 299.083
-0 19 18 13 222.148
5 21 20 13 156.084
10 50 20 13 100.949
15 47 20 13 56.680
20 49 20 13 22.793

observations remaining fixed at 13 regardless of the particular value perturbed. Furthermore, our model

always detects only one outlier, the true one, and it always belongs to the true group of female blue

crabs (denoted with • in Figure 5). Finally, by recalling that the original value of CL for the 25th point

was 32.5, it is also interesting to note how the estimated values of η (in the group containing the outlier)

move in line with the departure of the perturbed point from the group of membership.
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7 Comparison with trimmed clustering

Fritz et al. (2012) recently introduced the tclust package for R as a non-heirarchical and model-based

trimming approach to clustering. In this approach, a proportion p of the most outlying observations is

trimmed by assuming Gaussian groups, as we did here. In particular, the tclust() function implements

different algorithms aimed at maximizing the likelihood of the so-called spurious outliers model (see

Gallegos, 2002 and Gallegos and Ritter, 2005) under different types of constraints (specified by the

argument restr) and different possibilities for their strength (as controlled by the argument restr.fact).

Although the approach is flexible in terms of possibilities given to the user, it has the following drawbacks

when compared to our approach:

1. tclust adopts a hard clustering approach, meaning that each observation is either trimmed or fully

assigned to a cluster. In comparison, our approach is “double-soft”, meaning that each observation

has a posterior probability of cluster membership and, in each cluster, a posterior probability to be

either “good” or “bad”. While our soft classification can always be converted into a hard partition

(see Section 4.3), the reverse is not true.

2. In tclust, we have to pre-specify four quantities: k, p, restr, and restr.fact. Although some

general guidelines are given in Fritz et al. (2012), no automatic criterion is provided to select them.

This is a significant problem because we cannot expect the user to know these quantities in advance,

especially for high-dimensional spaces; on the contrary, the user should ask the statistical method

to discover the best specification for these quantities. Our approach is based on k, αj , ηj , and

the type of constraint for Σj . Differently from tclust, ML can be used to estimate αj and ηj

(see Section 3), and automatic criteria, such as the BIC and the ICL, can be adopted to select k

and the type of constraint for Σj (see Section 5). However, as mentioned in Section 4.4, we also

allow the user the possibility of specifying these quantities if preliminary information about them

is available.

3. While tclust only allows for clustering, the PMCGD models can also be used for model-based

classification and discriminant analysis.

8 Conclusions

A family of fourteen parsimonious mixtures of contaminated Gaussian distributions (PMCGD) models

has been introduced within the general model-based classification framework. These models generalize

the well-known family of fourteen Gaussian parsimonious clustering (GPC) models of Celeux and Govaert
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(1995). This generalization provides a more robust approach to the fitting of GPC models, as observations

that are atypical of a component are given reduced weight in the calculation of its mean vector and

covariance matrix. Moreover, natural detection of outliers is facilitated without the use of exogenous

trimming methods. Application of these models to simulated and real data demonstrates their superior

performance compared to the well-established GPC models as well as to other models within the mixture

modelling framework. Future work will focus on contamination of non-elliptical component densities to

allow an even more flexible modelling paradigm.
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The Indian Journal of Statistics, Series A, 71(2), 164–220.

22



Garćıa-Escudero, L. A., Gordaliza, A., and Matrán, C. (2003). Trimming tools in exploratory data

analysis. Journal of Computational and Graphical Statistics, 12(2).
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