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Abstract. The covariance matrix is a key component of many multivariate
robust procedures, whether or not the data are assumed to be Gaussian. We
examine the idea of robustly fitting a mixture of multivariate Gaussian densi-
ties in the situation when the number of components estimated is intentionally
too few. Using a minimum distance criterion, we show how useful results may
be obtained in practice. Application areas are numerous, and examples will
be provided.

1. Introduction

The problem of identifying and handling outliers is an important problem in data
analysis; see Barnett and Lewis [3] and Huber [11], for example. Finding out-
liers through interactive graphical exploration of small multivariate sets can be
accomplished using Swayne, Cook, and Buja’s XGobi system [24]; however, with
very large medium-dimensional datasets nonparametric density algorithms such as
Scott’s ASH [18] can be recommended. Of course, purely graphical and nonpara-
metric approaches to identifying outliers are prone to errors since many smooth
densities give rise to data that may appear to have outliers, but do not. The Cauchy
distribution is one example of such a density.

Thus the identification of outliers without an explicit probability model should
always be viewed as preliminary and exploratory. If a probability model is known,
then the tasks of parameter estimation and outlier identification can be more
rigorously defined. However, even probability models are usually known only ap-
proximately at best, and hence outliers so identified are still subject to certain
biases.

The assumption of a multivariate normal model is most common. Often data
may be transformed so that normality holds approximately. Successful robust es-
timation of the mean and covariance allows one to tag outliers more than three
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or four standard units from the mean. Finding the correct shape of the covariance
matrix is the more challenging and interesting task. This shape can be sought
without assuming normality. The minimum volume ellipse (MVE) has been inves-
tigated by Rousseeuw and others [15, 16, 14, 6, 27, 10], for example. Finding the
MVE exactly is a challenging combinatorial problem but reasonably good approxi-
mate solutions exist. The MVE approach is especially appealing when the number
of outliers is nontrivial and/or the outliers themselves form clusters.

Another approach that can be quite successful in this setting was proposed
by Aitkin and Wilson [1], who investigated fitting a gaussian mixture model for
x € RP

K
(1.1) F) = wrd(xluk, T

k=1

using the expectation-maximization (EM) algorithm [7]. This model is often used
for other purposes such as cluster analysis [13]. Here we treat the outliers as
members of “nuisance” clusters. Once successful estimation is achieved, we re-
order the labels so that the cluster weights are in decreasing magnitude, w; >
wg > --- > wg. Then in many situations, we may view the smallest K —1 clusters
as representing various kinds of outliers and outlying clusters, with (wy, p1, X1)
being the parameters of interest. For example, the fraction of outliers would be
estimated as being 1 — w;.

Getting the EM algorithm to work requires a number of steps. Choosing
K is especially tricky since many of the outliers may be singletons. Even more
difficult is getting good initial guesses for the mixture parameters, especially when
K is much larger or smaller than the “correct” model. Finally, small clusters
cannot support estimation of a full covariance matrix, so that special structure
may be assumed, such as a diagonal form or pooling of covariance information.
Nevertheless, as a conceptual framework for handling large numbers of outliers in
a range of challenging situations, the mixture model has great intuitive appeal.

A practical concern with the Aitkin and Wilson approach is that while a
normality assumption may make good sense for the “good” data, knowledge of
the distribution of the outliers and outlier clusters is more suspect. Since the
primary parameters of interest are (w1, i1, %1), a procedure which estimates only
that component would be of great interest. In one sense, the MVE approach is
capable of this task. In this paper, we propose an alternative estimation approach
to EM that can also estimate only a subfraction of the components of the mixture
model. Applications are numerous.

2. Mixture Estimation by Minimum Distance

Practical algorithms for estimating parameters in a model f(x|¢) by minimum
distance have been discussed by Beran [5], for example, by minimizing Hellinger
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distance between the model and a kernel density estimate. Such an indirect ap-
proach is not feasible for a parameter-rich model such as the mixture model; see
Scott [19]. One distance criterion, integrated squared error (ISE), affords better
numerical properties. ISE has been the criterion of choice for nonparametric func-
tion estimation [18], and Rudemo [17] showed how to formulate a cross-validated
estimate of ISE for histograms using a leave-one-out approach. Terrell [25] first
proposed using the ISE as an alternative to maximum likelihood, with extensions
by his student Kim [12]. The use of ISE for parametric estimation has been de-
scribed by Hjort [9] and Scott [19, 23, 26, 20]. A more general divergence criterion
(which includes ISE) has been described by Basu, et al. [4]. Mixture estimation by
ISE has been discussed in Scott [19)].

In the usual presentation, we seek to find the true parameter, 6y, from the
parametric model, f(x|#). In our case, our estimate will be of the form f(z|6), but
the true density, g(x), will not (necessarily) be from the parametric family, f(z|6).
Nevertheless, we seek to find the value of 6 such that f(z|0) is closest to g(x) in
the sense of integrated squared error.

0 = i | [ 1alp) - )" s
= argmin, :/f(x|9)2d:c—2/f(x|9)g(x)d:c+/g(x)2d:c}

— aguming | [ a9 - 28 (7(x10)]]

since [ g(z)*dz is a constant in the second line with respect to choice of 6, and
where X is a random variable from the true density, g(z). Now for many models
(including the normal mixture model), the first integral can be computed in closed
form for any value of the parameter vector, 6. Given a random sample, an unbiased
estimate of E[f(X|0)] is the mean. Thus a completely data-based version of the
ISE criterion is given by

(2.1) 0 = argmin, [/f(x|6‘)2d:v - %Zf(:m@)} .
i=1

In practice, this nonlinear optimization problem falls in the well-studied class of M-
estimators [9, 4, 20], and @ is often asymptotically normal. Scott [20] calls the value
of 6 which minimizes Equation 2.1 the L2FE estimator, since integrated squared
error and the Lo distance are equivalent.

A careful examination of the argument leading up to Equation 2.1 reveals that
the density model, f(x|6), need not be a density function, whereas the fact that
g(x) is a density was critical in estimating E[f(X|¢)]. Thus we may consider an
incomplete mixture model for f(z|f). The simplest such model is the multivariate
partial density component (MPDC) given by

(2.2) fx0) = wo(x|p, %),
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where 6 = (w, u, 3). Equation 2.1 for the MPDC is given explicitly by
(2.3) 0 = argmin, |w? ¢(0]0,2%) — 2w zn: B(xilp, %)
) n — )

Splus code that finds @ is available from the author.

3. Bivariate Examples

A thorough simulation study of robust properties often requires a book; see the
Princeton robustness study [2], for example. Here we show a sample of bivariate
examples of normal mixtures where the number of components, K, ranges from
two to five. We try to avoid any hidden assumptions, such as symmetry of outliers.
There are no singleton outliers. In fact, most outliers are in clusters with at least
50 or 100 points. The main central cluster has 500 or 1000 points.

In the first five and eighth examples, the “true” mixture component is located
at the origin, u = (0,0)”, with ¥ = I, the identity matrix. In the bivariate case,
the parameter estimated is six-dimensional:

0= (w, My Hy s Oxas Oxys Uyy)T
The iteration was started with the maximum likelihood estimates of the parameters

2)T'

0 = (1,i,g,si,rsmsy,sy

Both initial and final estimates of € are displayed graphically in each figure as
one-sigma ellipses.

Here are the particulars of the mixture samples for the four examples dis-
played in Figure 1:

(i) K =2, n; =500, ng =100, pgy = (5,5)7, ¥y = Iy;

(11) K = 3, ny = 500, Ng = N3z = 100, Mo = (5,5)T, M3 = — 2, 22 = 23 = IQ;
(iii) K =2, ny = 500, ny = 100, uz = (0,0)7, Xy = 25 Iy;
(iV) K= 2, ny = 500, Nng = 100, Mo = (7, 7)T, 22 = 9[2.

In the first frame of Figure 1, 100 points are centered at (5,5)7". The estimated
value of w = 81.5%, which is very close to 500/600. Notice the lack of any visual
correlation in the final estimate of 3.

In the second frame of Figure 1, two groups of 100 outlying points are centered
at (5,5)7 and (=5, —5)7. The estimated value of @ = 68.3%, which is very close
to 500/700. Again, the apparent correlation in the initial maximum likelihood
estimate of ¥ is correctly missing in the L2F estimate.

In the third frame of Figure 1, the 100 outliers share the same center but
their scale is 5 times greater. Given the overlap of “outliers” and “inliers,” w is
biased upwards. However, observe how $ is much closer to Is.
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In the fourth frame of Figure 1, which is a hybrid of frames one and three,
the 100 outlying points are centered at (7,7)7 and their scale is 9 I,. The esti-
mated value of w = 84.1%, which is very close to 500/600. Notice the lack of any

correlation in the final estimate of ;.

0.815

0.876 = | '.0_._841'

FIGURE 1. Multivariate partial density component estimation ex-
amples. The maximum likelihood one-sigma ellipse is shown as a
dotted line, while the L2F ellipse is shown as a thick solid line.
w is also given. The origin is at the intersection of the two axes.
See text for true parameter values.

Our second set of examples are displayed in Figure 2. In two of these, the
true correlation coefficient of the main cluster is p = 0.7. Here are the particulars
of the mixture samples for the four examples displayed in Figure 2:

(v) K = 4, ny = 1000, ny = ng = ng = 100, p2 = (5,5)7, ps = —po,
M3 = (5,—5)T, 22 = 23 = 24 = IQ;
(Vi) K= 2, ny = 500, pP1 = 0.7, Ng = 100, Mo = (5, 5)T, 22 = _[2;
(Vii) K= 2, ny = 500, p1 = 0.7, Ng = 100, Mo = (5, —5)T, 22 = _[2;
(viii) Multiple starting values with K = 5, ny = 1000, no = 50, ng = 100,
ng = 150, ny = 200, pe = (5,5)7, pus = (=5, -5)7, us = (5, -5)7, us =
(=5,5)T, 8o =83 =% = %5 = L.
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In the first frame of Figure 2, three outlying clusters of 100 points each
surround 1000 points at the origin. The estimated value of @ = 74.9%, which is
very close to 1000/1300.

0.749

0.034

0.841 o

70.066 0§161.-'-' -

FIGURE 2. Second set of Multivariate partial density component
estimate examples. In the final frame, solutions for five different
initial guesses of # are displayed. See text for true 6 values.

In the second frame of Figure 2, the 500 center points have a correlation of
p = 0.7. The group of 100 outlying points are centered at (5,5)7, which is in line
with the main axis of the covariance matrix. Here, the apparent correlation in the
initial maximum likelihood estimate of ¥ is correctly retained in the L2F estimate,
and the center is correctly estimated, too.

In the third frame of Figure 2, the main cluster is identical, but now the
100 outliers are centered at (5, —5)7. Thus the initial covariance estimate shows a
strong, but negative, correlation, when the true correlation is strong, but positive.
The L2F estimates properly reorient the covariance matrix.

The fourth frame of Figure 2 is similar to the first, but with four outlying
clusters (of different size 50, 100, 150, and 200). Starting from the maximum
likelihood estimates, a L2E MPDC component of size @ = 0.66 is found (actual
value is 1000/1500).
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Of special interest are the four other L2F MPDC estimates displayed. These
were found using different starting values for 6 that were closer to the true param-
eters of each outlying cluster. This confirms the earlier suggestion that the “size”
of a component is not as important as how separated the component is from the
remaining data. The smallest cluster found (in one of five runs) has @ = 0.034,
which is very close to 50/1500.

We have run a number of limited experiments in higher dimensions. The
algorithm initially failed to converge on the Fisher Iris data. Closer examination
revealed the reason to be that the data only had one decimal point. Adding a small
amount of random noise (blurring) fixed the convergence problem.

Examples similar to those in Figure 1 were run in dimensions up to seven, with
full covariance estimation. In seven dimensions, that amounts to 1 4+ 7 + 28 = 36
quantities in the parameter vector, #. An unfortunate aspect of the choice of in-
tegrated squared error is that ISE is not dimensionless (as is Hellinger distance,
L; distance, maximum likelihood). The practical implication of this fact is that
numerical optimization does not behave well due to scaling issues in these dimen-
sions. Gaining a better understanding of this phenomenon and extending the range
of dimensions where L2F may be applied should be a valuable area of research.

4. Regression
The extension of L2F to regression
yi=x f+e

is described and illustrated in Scott [20]. The algorithm is driven by a normal
assumption on the residuals, ¢; ~ N(0, 02). In our experience, we often see clusters
of outliers in the regression plot, or even multiple regression curves mixed together.
Here we briefly describe the extension of the MPDC approach to regression. The
beauty of the regression setting is that the error distribution is univariate even
with p predictor variables. Thus the MPDC is given by this assumption for the
error variable:
e ~w-N(0,02%).

The parameter vector estimated is § = (w, 3,0.)T, which is of length p + 3, as-
suming the parameter vector 3 includes an intercept term, .

We illustrate an application to a well-known set of data first described by
Harrison and Rubinfeld [8] on the median house value in census tracts in Boston,
following the usual transformation of the p = 13 variables. The residuals from the
least-squares fit were smoothed using a kernel estimate, as shown in the first frame
of Figure 3. Also shown is a N (0, 02) curve, with residual variance estimated in the
usual manner. The residual distributions are not too close, but only a few outliers
are apparent.

We next fit the L2F model with noise distribution w - N(0,¢2). The kernel
smooth of the residuals and the estimated MPDC are both drawn in the right
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frame of Figure 3. Here, &0 = 84.5%. Interpreting and diagnosing the fit is much
easier with the L2F fit. For example, while there are some outliers on the low end,
almost 14% of the outliers appear on the high side. In a more complete analysis
where the outlying census tracts are interactively displayed on maps, we can learn
that these tracts fall in certain regions (some along the Charles River) and not at
random; see Scott and Christian [21].

LS residuals robust residuals with wt=0.845

residual resicual

FIGURE 3. Kernel estimate of estimated residuals and fitted nor-
mal error density for the least squares fit (left frame) and the L2F
fit (right frame), for the Boston housing dataset.

5. Discussion

The PMDC approach is useful for outlier detection in many situations, and for
clustering in particular; see Scott and Szewczyk [22]. The concept of breakdown is
more complicated in this setting, as the algorithm is local. That is, the algorithm
converges to local normal clusters for certain ranges of initial parameter settings.
We have carefully examined the attractiveness of a single univariate component as
a function of the parameters of an adjacent component. Generally, if the compo-
nents overlap to a significant amount, the algorithm may not converge to either of
the separate components, but rather to a single large component.

We have found a way to overcome this limitation by optimizing over a subset
of the MPDC parameters. In Scott and Szewczyk [22], numerous random initial
guesses are used and the collection of parameter estimates, 6, is clustered to find
the most common solutions. We take these to be cluster locations.

Models other than normal may be chosen, however, the closed form expression
of the L2F criterion is very convenient for optimization. If the main cluster is not
approximately normal, the L2F solution may find the cluster, but the estimated
parameters will vary depending upon the degree of non-normality.

There are numerous other extensions which we only touch upon here. For
example, the MPDC may be formulated with more than one mixture component,
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or sequentially with some fixed mixture components, but then getting good ini-
tial estimates for 8 becomes more difficult. Other regression applications may be
formulated, including image processing tasks. We describe these separately.
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