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Abstract

Density estimation is an important statistical tool, and within R there are over 20
packages that implement it: so many that it is often difficult to know which to use.
This paper presents a brief outline of the theory underlying each package, as well as an
overview of the code and comparison of speed and accuracy. We focus on univariate
methods, but include pointers to other more specialised packages.

Overall, we found ASH and KernSmooth to be excellent: they are both fast, accu-
rate, and well-maintained.

1 Motivation

There are over 20 packages that perform density estimation in R, varying in both the-
oretical approach and computational performance. Users and developers who require
density estimation tools have different needs, and some methods of density estimation
may be more appropriate than others. This paper aims to summarise the existing
approaches to make it easier to pick the right package for the job.

We begin in Section [2] with a brief review of the underlying theory behind the
main approaches for density estimation, providing links to the relevant literature. In
Section [3] we describe the R packages that implement each approach, highlighting the
basic code needed to run their density estimation function and listing differences in
features (dimensionality, bounds, bandwidth selection, etc).

Section [4] compares the performance of each package with calculation speed, looking
at density estimation computations from 10 to 10 million observations. The accuracy of
the density estimations generated is also important. Section [5| compares the accuracy
of the density estimates using three distributions with varying degrees of challenge:
the uniform, normal and claw distributions. Section [f] investigates the relationship
between calculation time and accuracy, and we conclude in Section [7] with our findings
and recommendations.

2 Theoretical approaches

Density estimation builds an estimate of some underlying probability density function
using an observed data sample. Density estimation can either be parametric, where the



data is from a known family, or nonparametric, which attempts to flexibly estimate
an unknown distribution. We begin with a brief overview of the underlying theory,
focusing on nonparametric methods because of their generality. Common methods
include histograms, Section [2.1], kernel methods, Section[2.2] and penalized approaches,
Section 23] We attempt to give the flavor of edge method, without going into too much
detail. For a more in-depth treatment, we recommend |Scott| (1992a) and [Silverman
(1986).

We will assume that we have n iid data points, X1, Xo, ..., X,,, and we are interested
in an estimate, f(m), of the true density, f(x), at new location z.

2.1 Histogram

The histogram (Silverman, |1986) is the oldest (dating to the 1840’s (Friendly} 2005))
and least sophisticated method of density estimation. The main advantages are its
extreme simplicity and speed of computation. A histogram is piecewise constant (hence
not at all smooth) and can be extremely sensitive to the choice of bin origin.

A simple enhancement to the histogram is the average shifted histogram (ASH): it
is smoother than the histogram and avoids sensitivity to the choice of origin, but is

still computationally efficient. The premise of this approach (Scott, 1992b) is to take
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There are k =1 ... m - n bins across all histograms, each spanning [k%, (k+ 1)%]
with center (k—l—0.5)%. The ASH can be made somewhat more general by using all bins
to estimate the density at each point, weighting bins closer to the data more highly.
The general form of the weighted ASH is:

3
3

w(ly — x)ex(z)

3=
bl
i
I

ﬁlsh (:L') =

where w is a weighting function, [ is the center of bin k, and ¢ is the number of
points in that bin.

Because the univariate ASH is piecewise constant, it can be computed by taking
a histogram with m - n bins and computing a rolling sum over m adjacent bins. This
makes the ASH extremely fast to compute.

2.2 Kernel density estimation

The kernel density estimation approach overcomes the discreteness of the histogram
approaches by centering a smooth kernel function at each data point then summing to
get a density estimate. The basic kernel estimator can be expressed as
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where K is the kernel and h is the bandwidth (Scott, 1992b). The kernel is a
symmetric, usually positive function that integrates to one. Common kernel functions
are uniform, triangle, Epanechnikov, quartic (biweight), tricube (triweight), Gaussian
(normal), and cosine. The bandwidth, h, is a smoothing parameter: large bandwidths
produce very smooth estimates, small values produce wiggly estimates. It influences
estimates much more than the kernel, and so choosing a good bandwidth is critical to
get a good estimate.

Typically the bandwidth is selected by minimising L? risk, aka the mean integrated
square error:

MISE(f) = E U (Flz) - f(:c))2 d:p}

This optimisation problem is not easy because f(z) is unknown, and leads to many
theoretical approaches. General consensus is that plug-in selectors and cross validation
selectors are the most useful over a wide range of inputs.

The main challenge to the kde approach is varying data density: regions of high
data density could have small bandwidths, but regions with sparse data need large
bandwidths. Extensions to the basic kde approach overcome this problem by allowing
the bandwidth to vary (Terrell and Scott, [1992)

2.3 Penalized likelihood approaches

An alternative approach is to estimate the density as a mixture of m “basis” functions
(densities), compromising between quality of fit and complexity. This has the advan-
tage of allowing the density to be wigglier where the underlying data supports it. In
general, the penalized approach (Kauermann and Schellhase, 2009)) approximates the
density of x as a mixture of m densities:

f pen Z Ci ¢z

where ¢, is a density and ¢; are weights picked to ensure that fpen integrates to
one. Typically the basis functions are equally weighed and differ only by a location
parameter, u;, so we can simplify the definition to more closely resemble the kernel

approach:
1 m
fpen E ; K < )

Compared to the KDE, the bases/densities are no longer constrained to be centered
on the data points.

The pu; are often called knots, and the key problem of penalized density estimation
is finding the most appropriate number and location of knots. Typically this is done
by placing a large number of knots at equally spaced locations along the domain of
the data, and then minimizing a penalized likelihood to remove knots that contribute
little to the overall quality.




? TODO Should we include this section (including the part that’s commented out?

The importance of A lies in its role in controlling the amount of smoothness in the
density estimation. A conventional method of selecting this penalty parameter is by
the Akaike Information Criterion (AIC), in which we minimize:

-~

AIC(A) = —1(B) + df (\)

where df(\) = tr(Jp_l(B, )\)Jp(B,)\ = 0)). However, the penalized spline smooth-
ing approach illustrated by Kauermann and Schellhase uses mixed models through a
Bayesian viewpoint.

3 Density estimation packages

We now shift from our overview of broad theoretical approaches to specific R packages.
Table [1| summarizes the 15 density estimation packages that we reviewed, giving basic
information on what they do, their theoretical foundation, and the basic R code to use
them. The remainder of this section describes each package in more detail. For each
package, we summarize the input, output, and special features.

3.1 Histograms
3.1.1 graphics

graphics::hist allows users to generate a histogram (Venables and Ripley, 2002
of the data x. The breaks argument specifies the desired number of bins, or the
borders of each bin (for irregular binning), or a function that estimates the number
of bins automatically. By default, the function creates a plot, but this behavior can
be suppressed with plot = F. The function returns a list giving bin boundaries, mid-
points, counts and densities (standardized by bin width).

3.1.2 ash

The ash package (Scott, 2009) estimates ASHs using two functions: binl and ashl.
binl takes the data vector x, the interval for the estimation, a to b, and the desired
number of bins nbin, and counts the number of points in each bin. ashl takes the
output from binl and computes the generalized ASH, with weights defined by kopt.
It produces an equally spaced mesh of predictions, centered on each bin.

ash also provides 2d average shifted histograms with bin2 and ash2 functions.

3.2 Kernel density estimation

CRAN packages GenKern, kerdiest, KernSmooth, ks, np, plugdensity, and sm all use
the kernel density approach, as does stats::density. They differ primarily in their
means of selecting bandwidth.
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3.2.1 GenKern

The function KernSec in GenKern (Lucy and Aykroyd, 2010) performs univariate
density estimation with Gaussian kernels on input x. It supports multiple bandwidths,
ie.

foxto) 8 (5.%)

defined by xbandwidth. The default bandwidth is a single number selected using
the plugin rule defined by [Sheather and Jones| (1991). Output is a grid of xgridsize
predictions over range.x.

The function KernSur works similarly for 2 dimensions.

3.2.2 kerdiest

The kde function in kerdiest estimates a kernel density on input vec_data, with four
types of kernels, type_kernel. It provides three different automatic bandwidth selec-
tion methods. The default bandwidth is the plug-in method by [Polansky and Baker
(2000), PBbw; users can also choose the plug-in method by |Altman and Léger]| (1995)),
ALbW, and the cross-validation method by Bowman and Azzalini| (1997)), Cvbw. Output
defaults to a grid of 100 evenly spaced points over the range of the samples, but this
can be overridden by supplying a vector of locations, y.

3.2.3 KernSmooth

bkde (Wand and Ripley, 2010)) implements binned kernel density estimates using linear
binning (Wand}, [1994). Linear binning is a slight tweak to regular binning where if the
grid points z and z surround the data point y, then (z—y)/(z—x) mass is distributed to
the grid point at z, and (y — x)/(z — x) to the point at z. Density estimation proceeds
in a straightforward manner, using weighted bin counts rather than the individual
data points. Five kernels (normal, uniform, Epanechnikov, biweight and triweight),
can be selected with kernel. The default bandwidth is the “oversmoothed bandwidth
selector” (Wand and Jones, (1995, pg. 61). Output is the density at gridsize evenly
spaced points over range.x.

bkde2D implements a binned 2d density estimate, and bkfe provides kernel func-
tionals: the integral of the product of the density estimate and its derivative of order
drv. locpoly implements local polynomial regression for a non-parametric estimate of

B(Y]X).

3.2.4 ks

The ks package (Duong, 2011) can perform density estimation computation for up
to 6 dimensions. ks provides a range of bandwidth selection routines: exact MISE
and asymptotic MISE estimates Hamise.mixt and Hmise.mixt, biased cross-validated



Hbcv, least-squares cross-validation Hlscv, plug-in estimator Hpi, and smoothed cross-
validation Hscv. All bandwidth estimators also have a variant that estimates only the
diagonal (i.e. it assumes the dimensions are uncorrelated).

kde estimates densities of 1-6d data x, using bandwidth H (or h if diagonal). Esti-
mates use binned input with bin size bgridsize if binned is TRUE, and can use weights
specified by w. Output is predicted densities over a grid of gridsize points from xmin
to xmax, or alternatively at locations eval.points.

ks also provides pdf dkde, cdf pkde, inverse cdf gkde, and random number genera-
tion prkde functions for the densities it generates.

3.2.5 np

The np package (Hayfield and Racinel |2008) uses a three-step approach: computing
the bandwidth, npudensbw; estimating the density, npudens; then extracting predicted
densities values and standard errors, predict. np focuses on “generalized product
kernels” (Racine and Li, |2004), and data-driven bandwidth selection methods that
the authors warn can be computationally demanding. For continuous data, the three
classes of kernel estimators in the function are fixed, adaptive nearest-neighbor, and
generalized nearest neighbor.

np also supports semi-paramteric and partially linear models, kernel quantile re-
gression and smooth coefficient kernel regression. It works with any type of data:
numeric, factors and ordered factors.

3.2.6 plugdensity

This package’s sole function, plugin.density, uses the iterative plug-in approach to
select bandwidth in kernel density estimation Gasser et al.| (1991). Output is a grid of
estimated densities at nout evenly spaced points, or, if specified, locations xout.

3.2.7 sm

The sm package (Bowman and Azzalini, 2010, 1997)) can perform kernel density esti-
mation from 1d to 3d. The function sm.density takes input x, bandwidths h, and
frequency weights h.weights. If no bandwidth is specified, h.select uses a normal
optimal smoothing estimate. Output is predicted density, with standard error, at
eval.points locations. The default graphical output can be suppressed with display
= "none".

sm also provides tools for non-parametric ANCOVA, analysis of autoregression, re-
gression (including logistic, Poisson and autocorrelated), and for density estimation on
a sphere.

3.2.8 stats

stats::density performs univariate density estimate with normal (Gaussian), rectangu-
lar, triangular, and cosine kernels. Bandwidth is specified by parameter bw, which de-
faults to Silverman’s rule of thumb, bw.nrd0. Other bandwidth estimators are bw.nrd,



Scott’s variant, bw.bcv and bw.ucv, biased and unbiased cross-validation, and bw.SJ,
the Sheather and Jones estimate. Weights can be supplied with weights. Output is n
evenly spaced points from from to to. By default from and to are set cut bandwidths
away from the range of the data.

3.3 Penalized approaches

These packages provided density estimation based on penalised approaches and tend
to have far fewer tuning parameters. The underlying methodology is considerably
more complex than for kernel density estimates, and we recommend users familiarise
themselves with the underlying literature before using these packages.

3.3.1 gss

gss (Gu, 2011)) uses a penalized likelihood technique for nonparametric density estima-
tion. ssden has a formula interface, working on vectors in the global environment, or
variables in a data frame supplied with the data argument. The function returns an
ssden object, and predictions can be obtained at arbitrary locations with dssden. By
default, the number of knots and their locations are picked using cross-validation, but
they can be supplied with the nbasis and id.basis arguments.

gss also provides cdf pssden and inverse cdf gssden functions for the densities it
generates; in addition to 1d density estimation, it also performs conditional density
estimation, smoothing spline ANOVA, hazard models, and log-linear models.

3.3.2 locfit

The locfit package (Loader, 2010)) utilizes a local likelihood approach to density estima-
tion. The locfit function has a flexible formula interface, with ~ 1p(x) performing 1d
density estimation. The 1p function controls the local polynomial model: nn specifies
the nearest-neighbour bandwidth, h the constant bandwidth, and deg the degree of the
polynomial. Weights can be supplied with the weights argument, and bounds can be
supplied with x1im. The function returns an object of class locfit, and predictions
at arbitrary locations can be produced with the predict method.

locfit also performs local regression in robust and censored variants, and can provide
standard errors for predictions.

3.3.3 pendensity

The eponymous pendensity function (Schellhase), 2010) estimates densities with pe-
nalized splines. It has a formula interface where x ~ 1 specifies a 1d density and base
is used to select the basis function (either bspline or gaussian). The function returns
an object of class pendensity, and predicted densities at the locations of the original
data points are stored in $results$fitted.



3.3.4 logspline

logspline (Kooperberg, 2009) uses a maximum likelihood approach. The logspline
function takes numeric data in argument x, and if known, bounds can be supplied with
1bound and ubound. The function returns an object of class logspline, and predicted
densities at arbitrary locations can be extracted with dlogspline.

logspline also provides cdf plogspline, inverse cdf qlogspline and random number
generation, rlogspline, functions for the densities it generates.

3.4 Taut strings approach
3.4.1 ftnonpar

For one-dimensional data x, the pmden function in ftnonpar returns density estimates
through piecewise monotone density estimation. The function returns a list with ele-
ment y giving density estimates at the locations of the original data points.

ftnonpar also provides piecewise monotone logistic regression, regression, and spec-
tral density approximation.

3.5 Other packages

Other packages compute more specialized density estimates. We list them below, with
a brief description of each package’s use case and pointers to the relevant literature.

e Package bayesm (Rossi., 2011): a Bayesian approach to density estimation.
e Package delt (Klemela, 2009): uses adaptive histograms.

e Package feature (Duong and Wand| 2011): identifies significant features of kernel
estimates of 1- to 4- dimensional data.

e Package fdrtool (Strimmer., 2011): monotone density estimates.
e Package hdrcde (Hyndman| 2010): conditional kernel density estimate.
e Package ICE (Braun): kernel estimates for interval-censored data.

e Package latticeDensity (Barry, [2011): lattice based density estimator for 2d
regions with irregular boundaries and holes.

e Package logcondens (D’umbgen and Rufibach, 2011): fitting of log-concave den-
sities

e Package MKLE (Jaki, [2009)): maximum kernel likelihood estimator for a given
dataset and bandwidth.

e Package pencopula (Schellhase, 2011): penalized hierarchical B-splines estima-
tion of copula densities.

e MASS: :kde2d, bivariate kernel density estimates



4 Density estimation computation speed

We compared the computation time for the default method in each package using
normally distributed data from 10 to 10,000,000 samples. To measure calculation
time, we used the microbenchmark package (Mersmann, 2011). Figure [I| shows the
results. Note that both axes are log scaled.
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Figure 1: Calculation time required for density estimation as the number of data points in the
calculation increased. Graph is shown on a log scale.

The ASH and KernSmooth packages are exceptionally fast, computing density es-
timates for 10 million points in under a second. ASH is fast because it uses a simple
binning algorithm implemented in Fortran, and KernSmooth is fast because it uses
a binned approximation for the density estimate. Core functions hist and density
(labeled stat) are close runners up, taking under 10 seconds for 10 million points. hist
is fast because it is a simple algorithm and is implemented in C, while density is fast
because it takes advantage of a fast Fourier transform.

On the other end, the np package implements data-driven bandwidth calculation,
and as we can see from the results, computation time may be extremely slow. Data
sets with more than 103 points are computationally infeasible. The developers do warn
that this package’s approach may be computationally demanding and that the cross-
validation run times are of order n?. Similarly, it appears that pendensity’s penalized
splines method requires significant computational time, more so than gss’s penalized
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likelihood technique. Note that these packages do considerably more than univariate
density estimation: generalisation comes with a performance cost for simple cases.

5 Accuracy of density estimates

Speed of computation in a package is insufficient in assessing performance, as the
quality of the results must be considered as well. To do so, we use the uniform, normal,
and claw distributions for varying degrees of challenge. For each distribution, we take
increasing sizes of data points (n), estimate the density using the default parameters
for each package and compare results to the true underlying distribution by calculating
the mean absolute error. Results are shown in Figure [2, These are admittedly crude
challenges, but should serve to give a general sense of the accuracy of each package.

Due to memory and computational constraints, some trials could only test certain
numbers of data points before calculations became unmanageable. This is reflected in
the plots, where not all packages test up to the same n.
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Figure 2: Mean absolute error using each package with different true underlying distributions. To
reduce cluttering, only select packages are displayed.

We expect that as the number of data points in the estimate increases, the amount
of error should decrease, in accordance with the law of large numbers. In the plot
from our trials, all the packages exhibit this behavior except for GenKern, which
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disturbingly has greater error with more data points. From the uniform distribution
density estimates, it appears that ftnonpar and kerdiest yield lower levels of error than
the other packages. For ftnonpar, the results partially support the claim of
that the taut strings approach should allow good estimates for uniform and
claw distributions. Overall, the packages that yielded the most accurate estimates
were logspline, ASH, KernSmooth, and the density function.

6 Speed vs. accuracy

We initially expected that calculation time and level of error would be correlated.
The computation time results showed that faster packages included those taking the
histogram approach or binning in kernel density estimation, and we expect these to
have a higher degree of error. Meanwhile, more time spent on computation should
hopefully lead to better results.
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Figure 3: Estimation speed (x-axis) and mean absolute error (y-axis) for each package when fit to
the normal distribution. All paths are shown in the background of each panel to support easier
comparison. The best methods lie in the lower left quadrant: they are both fast and accurate.

Figure [3| shows the tradeoff between speed and accuracy. In this plot, the most
desirable position is in the lower left corner, where both computation time and level
of error are low. We do not see what we expect: there is no clear negative correlation
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Package

between speed and accuracy. In fact ASH and KernSmooth packages are both fast and
accurate compared to the other packages.

We wondered if a better causal explanation might be that some packages are better
written, hence are both faster and more accurate. A useful proxy for package quality
might be the number of times the package has been updated. More frequent updating
could suggest that the maintainer is making constant improvements, resulting in higher
package quality; however, this trend might also imply that those packages are the ones
in need of modifications while others already operate effectively. By inspecting the
CRAN archive we determined the release dates of all versions of the packages we
investigated. Figure [4] summarises this graphically, and Table [2] highlights the most
frequently updated packages.

Both KernSmooth and ASH have a long history of regular updates.

sm

plugdensity
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np -

MASS -+

logspline

locfit

ks -+

KernSmooth

kerdiest -

gss

GenKern -

ftnonpar -

ash
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Package Updates

Figure 4: The update dates for each package examined in this paper.

7 Conclusion

Our findings suggest that the best packages did exhibit a tradeoff between speed and
accuracy but were fast, low in error, and regularly updated. We recommend begin-

13



Package Current Version Number of Updates

ks 1.8.1 52
gss 1.1-7 30
np 0.40-4 24
KernSmooth 2.23-4 24
sm 2.2-4.1 22
locfit 1.5-6 17
logspline 2.1.3 15
ftnonpar 0.1-84 11
ASH 1.0-12 9
MASS 7.3-13 9
GenKern 1.1-10 6
pendensity 0.2.3 3
kerdiest 1 1
plugdensity  0.8-2 1

Table 2: This table shows version numbers and updates for packages used in both computation
time and calculation error testing.

ning with the ASH or KernSmooth packages. Both ranked high for performance, and
the package updates information also showed that they are two of the oldest density
estimation packages, with regular updates.

It is important to note that our recommendations were based on the series of tests
we were able to perform and that it may be more apropos to utilize other packages
depending on user needs. For example, our density estimation accuracy benchmark
distributions were uniform, normal, and claw, and we observed that the package ftnon-
par performed better than the other packages for uniform but not for normal or claw.
In short, certain theoretical approaches may result in better performance for different
underlying distributions or data sets.

We hope that our review of density estimation packages in R will make it easier for
others to match problems to solutions in the future.
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