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Abstract

While robust parameter estimation has been well studied in parametric density es-
timation, there has been little investigation into robust density estimation in the
nonparametric setting. We present a robust version of the popular kernel density
estimator (KDE). As with other estimators, a robust version of the KDE is useful
since sample contamination is a common issue with datasets. What “robustness”
means for a nonparametric density estimate is not straightforward and is a topic
we explore in this paper. To construct a robust KDE we scale the traditional KDE
and project it to its nearest weighted KDE in the L2 norm. This yields a scaled
and projected KDE (SPKDE). Because the squared L2 norm penalizes point-wise
errors superlinearly this causes the weighted KDE to allocate more weight to high
density regions. We demonstrate the robustness of the SPKDE with numerical
experiments and a consistency result which shows that asymptotically the SPKDE
recovers the uncontaminated density under sufficient conditions on the contami-
nation.

1 Introduction

The estimation of a probability density function (pdf) from a random sample is a ubiquitous problem
in statistics. Methods for density estimation can be divided into parametric and nonparametric,
depending on whether parametric models are appropriate. Nonparametric density estimators (NDEs)
offer the advantage of working under more general assumptions, but they also have disadvantages
with respect to their parametric counterparts. One of these disadvantages is the apparent difficulty in
making NDEs robust, which is desirable when the data follow not the density of interest, but rather
a contaminated version thereof. In this work we propose a robust version of the KDE, which serves
as the workhorse among NDEs [11, 10].

We consider the situation where most observations come from a target density ftar but some ob-
servations are drawn from a contaminating density fcon, so our observed samples come from the
density fobs = (1− ε) ftar + εfcon. It is not known which component a given observation comes
from. When considering this scenario in the infinite sample setting we would like to construct some
transform that, when applied to fobs, yields ftar. We introduce a new formalism to describe trans-
formations that “decontaminate” fobs under sufficient conditions on ftar and fcon. We focus on a
specific nonparametric condition on ftar and fcon that reflects the intuition that the contamination
manifests in low density regions of ftar. In the finite sample setting, we seek a NDE that converges
to ftar asymptotically. Thus, we construct a weighted KDE where the kernel weights are lower in
low density regions and higher in high density regions. To do this we multiply the standard KDE
by a real value greater than one (scale) and then find the closest pdf to the scaled KDE in the L2

norm (project), resulting in a scaled and projected kernel density estimator (SPKDE). Because the
squared L2 norm penalizes point-wise differences between functions quadratically, this causes the
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SPKDE to draw weight from the low density areas of the KDE and move it to high density areas to
get a more uniform difference to the scaled KDE. The asymptotic limit of the SPKDE is a scaled
and shifted version of fobs. Given our proposed sufficient conditions on ftar and fcon, the SPKDE
can asymptotically recover ftar.

A different construction for a robust kernel density estimator, the aptly named “robust kernel density
estimator” (RKDE), was developed by Kim & Scott [6]. In that paper the RKDE was analytically
and experimentally shown to be robust, but no consistency result was presented. Vandermeulen
& Scott [15] proved that a certain version of the RKDE converges to fobs. To our knowledge the
convergence of the SPKDE to a transformed version of fobs, which is equal to ftar under sufficient
conditions on ftar and fcon, is the first result of its type.

In this paper we present a new formalism for nonparametric density estimation, necessary and suf-
ficient conditions for decontamination, the construction of the SPKDE, and a proof of consistency.
We also include experimental results applying the algorithm to benchmark datasets with compar-
isons to the RKDE, traditional KDE, and an alternative robust KDE implementation. Many of our
results and proof techniques are novel in KDE literature. Proofs are contained in the supplemental
material.

2 Nonparametric Contamination Models and Decontamination Procedures
for Density Estimation

What assumptions are necessary and sufficient on a target and contaminating density in order to
theoretically recover the target density is a question that, to the best of our knowledge, is completely
unexplored in a nonparametric setting. We will approach this problem in the infinite sample setting,
where we know fobs = (1 − ε)ftar + εfcon and ε, but do not know ftar or fcon. To this end we
introduce a new formalism. Let D be the set of all pdfs on Rd. We use the term contamination
model to refer to any subset V ⊂ D × D, i.e. a set of pairs (ftar, fcon). Let Rε : D → D be
a set of transformations on D indexed by ε ∈ [0, 1). We say that Rε decontaminates V if for all
(ftar, fcon) ∈ V and ε ∈ [0, 1) we have Rε((1− ε)ftar + εfcon) = ftar.

One may wonder whether there exists some set of contaminating densities, Dcon, and a transfor-
mation, Rε, such that Rε decontaminates D × Dcon. In other words, does there exist some set of
contaminating densities for which we can recover any target density? It turns out this is impossible
if Dcon contains at least two elements.

Proposition 1. LetDcon ⊂ D contain at least two elements. There does not exist any transformation
Rε which decontaminates D ×Dcon.

Proof. Let f ∈ D and g, g′ ∈ Dcon such that g 6= g′. Let ε ∈ (0, 1
2 ). Clearly ftar , f(1−2ε)+gε

1−ε

and f ′tar ,
f(1−2ε)+εg′

1−ε are both elements of D. Note that

(1− ε)ftar + εg′ = (1− ε)f ′tar + εg.

In order for Rε to decontaminate D with respect to Dcon, we need Rε ((1− ε)ftar + εg′) = ftar
and Rε ((1− ε)f ′tar + εg) = f ′tar, which is impossible since ftar 6= f ′tar.

This proposition imposes significant limitations on what contamination models can be decontami-
nated. For example, suppose we know that fcon is Gaussian with known covariance matrix and un-
known mean. Proposition 1 says we cannot designRε so that it can decontaminate (1−ε)ftar+εfcon
for all ftar ∈ D. In other words, it is impossible to design an algorithm capable of removing Gaus-
sian contamination (for example) from arbitrary target densities. Furthermore, ifRε decontaminates
V and V is fully nonparametric (i.e. for all f ∈ D there exists some f ′ ∈ D such that (f, f ′) ∈ V)
then for each (ftar, fcon) pair, fcon must satisfy some properties which depend on ftar.

2.1 Proposed Contamination Model

For a function f : Rd → R let supp(f) denote the support of f . We introduce the following
contamination assumption:
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Assumption A. For the pair (ftar, fcon), there exists u such that fcon(x) = u for almost all (in the
Lebesgue sense) x ∈ supp(ftar) and fcon(x′) ≤ u for almost all x′ /∈ supp(ftar).

See Figure 1 for an example of a density satisfying this assumption. Because fcon must be uniform
over the support of ftar a consequence of Assumption A is that supp(ftar) has finite Lebesgue mea-
sure. Let VA be the contamination model containing all pairs of densities which satisfy Assumption
A. Note that

⋃
(ftar,fcon)∈VA ftar is exactly all densities whose support has finite Lebesgue measure,

which includes all densities with compact support.

The uniformity assumption on fcon is a common “noninformative” assumption on the contamina-
tion. Furthermore, this assumption is supported by connections to one-class classification. In that
problem, only one class (corresponding to our ftar) is observed for training, but the testing data is
drawn from fobs and must be classified. The dominant paradigm for nonparametric one-class clas-
sification is to estimate a level set of ftar from the one observed training class [14, 7, 13, 16, 12, 9],
and classify test data according to that level set. Yet level sets only yield optimal classifiers (i.e.
likelihood ratio tests) under the uniformity assumption on fcon, so that these methods are implicitly
adopting this assumption. Furthermore, a uniform contamination prior has been shown to optimize
the worst-case detection rate among all choices for the unknown contamination density [5]. Finally,
our experiments demonstrate that the SPKDE works well in practice, even when Assumption A is
significantly violated.

2.2 Decontamination Procedure

Under Assumption A ftar is present in fobs and its shape is left unmodified (up to a multiplicative
factor) by fcon. To recover ftar it is necessary to first scale fobs by β = 1

1−ε yielding
1

1− ε
((1− ε)ftar + εfcon) = ftar +

ε

1− ε
fcon. (1)

After scaling we would like to slice off ε
1−εfcon from the bottom of ftar + ε

1−εfcon. This transform
is achieved by

max

{
0, ftar +

ε

1− ε
fcon − α

}
, (2)

where α is set such that 2 is a pdf (which in this case is achieved with α = r ε
1−ε ). We will now

show that this transform is well defined in a general sense. Let f be a pdf and let
gβ,α = max {0, βf (·)− α}

where the max is defined pointwise. The following lemma shows that it is possible to slice off the
bottom of any scaled pdf to get a transformed pdf and that the transformed pdf is unique.
Lemma 1. For fixed β > 1 there exists a unique α′ > 0 such that ‖gβ,α′‖L1 = 1.

Figure 2 demonstrates this transformation applied to a pdf. We define the following transform
RAε : D → D where RAε (f) = max

{
1

1−εf(·)− α, 0
}

where α is such that RAε (f) is a pdf.

  

εf
con

(1-ε)f
tar

Figure 1: Density with contamination
satisfying Assumption A

Proposition 2. RAε decontaminates VA.

The proof of this proposition is an intermediate step for
the proof for Theorem 2. For any two subsets of V,V ′ ⊂
D × D, Rε decontaminates V and V ′ iff Rε decontam-
inates V

⋃
V ′. Because of this, every decontaminating

transform has a maximal set which it can decontaminate.
Assumption A is both sufficient and necessary for decon-
tamination by RAε , i.e. the set VA is maximal.
Proposition 3. Let {(q, q′)} ∈ D × D and (q, q′) /∈ VA.
RAε cannot decontaminate {(q, q′)}.

The proof of this proposition is in the supplementary ma-
terial.

2.3 Other Possible Contamination Models
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1-1/β

Original Density Scaled Density Shifted to pdf

β-1

Figure 2: Infinite sample SPKDE transform. Arrows indi-
cate the area under the line.

The model described previously is
just one of many possible mod-
els. An obvious approach to robust
kernel density estimation is to use
an anomaly detection algorithm and
construct the KDE using only non-
anomalous samples. We will inves-
tigate this model under a couple of
anomaly detection schemes and de-
scribe their properties.

One of the most common methods for anomaly detection is the level set method. For a probability
measure µ this method attempts to find the set S with smallest Lebesgue measure such that µ(S)
is above some threshold, t, and declares samples outside of that set as being anomalous. For a
density f this is equivalent to finding λ such that

∫
{x|f(x)≥λ} f(y)dy = t and declaring samples

were f(X) < λ as being anomalous. Let X1, . . . , Xn be iid samples from fobs. Using the level
set method for a robust KDE, we would construct a density f̂obs which is an estimate of fobs.
Next we would select some threshold λ > 0 and declare a sample, Xi, as being anomalous if
f̂obs(Xi) < λ. Finally we would construct a KDE using the non-anomalous samples. Let χ{·} be
the indicator function. Applying this method in the infinite sample situation, i.e. f̂obs = fobs, would

cause our non-anomalous samples to come from the density p(x) =
fobs(x)χ{fobs(x)>λ}

τ where τ =∫
χ{f(y)>λ}f(y)dy. See Figure 3. Perfect recovery of ftar using this method requires εfcon(x) ≤

ftar(x) (1− ε) for all x and that fcon and ftar have disjoint supports. The first assumption means
that this density estimator can only recover ftar if it has a drop off on the boundary of its support,
whereas Assumption A only requires that ftar have finite support. See the last diagram in Figure
3. Although these assumptions may be reasonable in certain situations, we find them less palatable
than Assumption A. We also evaluate this approach experimentally later and find that it performs
poorly.

λ

Original Density Threshold at λ 

Set density under threshold to 0 Normalize to integrate to 1

Figure 3: Infinite sample version of the level set
rejection KDE

Another approach based on anomaly detection
would be to find the connected components of
fobs and declare those that are, in some sense,
small as being anomalous. A “small” con-
nected component may be one that integrates
to a small value, or which has a small mode.
Unfortunately this approach also assumes that
ftar and fcon have disjoint supports. There are
also computational issues with this anomaly de-
tection scheme; finding connected components,
finding modes, and numerical integration are
computationally difficult.

To some degree, RAε actually achieves the ob-
jectives of the previous two robust KDEs. For
the first model, the RAε does indeed set those regions of the pdf that are below some threshold to
zero. For the second, if the magnitude of the level at which we choose to slice off the bottom of
the contaminated density is larger than the mode of the anomalous component then the anomalous
component will be eliminated.

3 Scaled Projection Kernel Density Estimator

Here we consider approximating RAε in a finite sample situation. Let f ∈ L2
(
Rd
)

be a pdf and
X1, . . . , Xn be iid samples from f . Let kσ (x, x′) be a radial smoothing kernel with bandwidth σ
such that kσ (x, x′) = σ−dq (‖x− x′‖2 /σ), where q (‖·‖2) ∈ L2

(
Rd
)

and is a pdf. The classic
kernel density estimator is:

f̄nσ :=
1

n

n∑
1

kσ (·, Xi) .
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In practice ε is usually not known and Assumption A is violated. Because of this we will scale our
density by β > 1 rather than 1

1−ε . For a density f define

Qβ(f) , max {βf (·)− α, 0} ,

where α = α(β) is set such that the RHS is a pdf. β can be used to tune robustness with larger
β corresponding to more robustness (setting β to 1 in all the following transforms simply yields
the KDE). Given a KDE we would ideally like to apply Qβ directly and search over α until
max

{
βf̄nσ (·)− α, 0

}
integrates to 1. Such an estimate requires multidimensional numerical in-

tegration and is not computationally tractable. The SPKDE is an alternative approach that always
yields a density and manifests the transformed density in its asymptotic limit.

We now introduce the construction of the SPKDE. Let Dnσ be the convex hull of
kσ (·, X1) , . . . , kσ (·, Xn) (the space of weighted kernel density estimators). The SPKDE is de-
fined as

fnσ,β := arg min
g∈Dnσ

∥∥βf̄nσ − g∥∥L2 ,

which is guaranteed to have a unique minimizer sinceDnσ is closed and convex and we are projecting
in a Hilbert space ([1] Theorem 3.14). If we represent fnσ,β in the form

fnσ,β =

n∑
1

aikσ (·, Xi) ,

then the minimization problem is a quadratic program over the vector a = [a1, . . . , an]
T , with a

restricted to the probabilistic simplex, ∆n. Let G be the Gram matrix of kσ (·, X1) , . . . , kσ (·, Xn),
that is

Gij = 〈kσ (·, Xi) , kσ (·, Xj)〉L2

=

∫
kσ (x,Xi) kσ (x,Xj) dx.

Let 1 be the ones vector and b = G1βn , then the quadratic program is

min
a∈∆n

aTGa− 2bTa.

Since G is a Gram matrix, and therefore positive-semidefinite, this quadratic program is convex.
Furthermore, the integral defining Gij can be computed in closed form for many kernels of interest.
For example for the Gaussian kernel

kσ (x, x′) =
(
2πσ2

)− d2 exp

(
−‖x− x′‖2

2σ2

)
=⇒ Gij = k√2σ(Xi, Xj),

and for the Cauchy kernel [2]

kσ (x, x′) =
Γ
(

1+d
2

)
π(d+1)/2 · σd

(
1 +
‖x− x′‖2

σ2

)− 1+d
2

=⇒ Gij = k2σ(Xi, Xj).

We now present some results on the asymptotic behavior of the SPKDE. Let D be the set of all pdfs
in L2

(
Rd
)
. The infinite sample version of the SPKDE is

f ′β = arg min
h∈D
‖βf − h‖2L2 .

It is worth noting that projection operators in Hilbert space, like the one above, are known to be well
defined if the convex set we are projecting onto is closed and convex. D is not closed in L2

(
Rd
)
,

but this turns out not to be an issue because of the form of βf . For details see the proof of Lemma
2 in the supplemental material.

Lemma 2. f ′β = max {βf (·)− α, 0} where α is set such that max {βf (·)− α, 0} is a pdf.
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Given the same rate on bandwidth necessary for consistency of the traditional KDE, the SPKDE
converges to its infinite sample version in its asymptotic limit.

Theorem 1. Let f ∈ L2
(
Rd
)
. If n→∞ and σ → 0 with nσd →∞ then

∥∥∥fnσ,β − f ′β∥∥∥
L2

p→ 0.

Because fnσ,β is a sequence of pdfs and f ′β ∈ L2
(
Rd
)
, it is possible to show L2 convergence implies

L1 convergence.

Corollary 1. Given the conditions in the previous theorem statement,
∥∥∥fnσ,β − f ′β∥∥∥

L1

p→ 0.

To summarize, the SPKDE converges to a transformed version of f . In the next section we will
show that under Assumption A and with β = 1

1−ε , the SPKDE converges to ftar.

3.1 SPKDE Decontamination

Let ftar ∈ L2
(
Rd
)

be a pdf having support with finite Lebesgue measure and let ftar and fcon
satisfy Assumption A. Let X1, X2, . . . , Xn be iid samples from fobs = (1− ε) ftar + εfcon with
ε ∈ [0, 1). Finally let fnσ,β be the SPKDE constructed from X1, . . . , Xn, having bandwidth σ and
robustness parameter β. We have

Theorem 2. Let β = 1
1−ε . If n→∞ and σ → 0 with nσd →∞ then

∥∥∥fnσ,β − ftar∥∥∥
L1

p→ 0.

To our knowledge this result is the first of its kind, wherein a nonparametric density estimator is able
to asymptotically recover the underlying density in the presence of contaminated data.

4 Experiments

For all of the experiments optimization was performed using projected gradient descent. The pro-
jection onto the probabilistic simplex was done using the algorithm developed in [4] (which was
actually originally discovered a few decades ago [3, 8]).

4.1 Synthetic Data

To show that the SPKDE’s theoretical properties are manifested in practice we conducted an ide-
alized experiment where the contamination is uniform and the contamination proportion is known.
Figure 4 exhibits the ability of the SPKDE to compensate for uniform noise. Samples for the den-
sity estimator came from a mixture of the “Target” density with a uniform contamination on [−2, 2],
sampling from the contamination with probability ε = 0.2. This experiment used 500 samples and
the robustness parameter β was set to 1

1−ε = 5
4 (the value for perfect asymptotic decontamination).

The SPKDE performs well in this situation and yields a scaled and shifted version of the standard
KDE. This scale and shift is especially evident in the preservation of the bump on the right hand side
of Figure 4.

4.2 Datasets

In our remaining experiments we investigate two performance metrics for different amounts of con-
tamination. We perform our experiments on 12 classification datasets (names given in the supple-
mental material) where the 0 label is used as the target density and the 1 label is the anomalous
contamination. This experimental setup does not satisfy Assumption A. The training datasets are
constructed with n0 samples from label 0 and ε

1−εn0 samples from label 1, thus making an ε pro-
portion of our samples come from the contaminating density. For our experiments we use the values
ε = 0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30. Given some dataset we are interested in how well our density
estimators f̂ estimate the density of the 0 class of our dataset, ftar. Each test is performed on 15
permutations of the dataset. The experimental setup here is similar to the setup in Kim & Scott [6],
the most significant difference being that σ is set differently.

4.3 Performance Criteria
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Figure 4: KDE and SPKDE in the presence of uni-
form noise

First we investigate the Kullback-Leibler (KL)
divergence

DKL

(
f̂ ||f0

)
=

∫
f̂ (x) log

(
f̂ (x)

f0 (x)

)
dx.

This KL divergence is large when f̂ estimates
f0 to have mass where it does not. For exam-
ple, in our context, f̂ makes mistakes because
of outlying contamination. We estimate this KL
divergence as follows. Since we do not have ac-
cess to f0, it is estimated from the testing sam-
ple using a KDE, f̃0. The bandwidth for f̃0 is
set using the testing data with a LOOCV line
search minimizingDKL

(
f0||f̃0

)
, which is de-

scribed in more detail below. We then approxi-
mate the integral using a sample mean by gen-
erating samples from f̂ , {x′i}

n′

1 and using the
estimate

DKL

(
f̂ ||f0

)
≈ 1

n′

n′∑
1

log

(
f̂ (x′i)

f̃0 (x′i)

)
.

The number of generated samples n′ is set to double the number of training samples.

Since KL divergence isn’t symmetric we also investigate

DKL

(
f0||f̂

)
=

∫
f0 (x) log

(
f0 (x)

f̂ (x)

)
dx = C −

∫
f0 (y) log

(
f̂ (y)

)
dy,

where C is a constant not depending on f̂ . This KL divergence is large when f0 has mass where f̂
does not. The final term is easy to estimate using expectation. Let {x′′i }

n′′

1 be testing samples from
f0 (not used for training). The following is a reasonable approximation

−
∫
f0 (y) log

(
f̂ (y)

)
dy ≈ − 1

n′′

n′′∑
1

log
(
f̂ (x′′i )

)
.

For a given performance metric and contamination amount, we compare the mean performance of
two density estimators across datasets using the Wilcoxon signed rank test [17]. Given N datasets
we first rank the datasets according to the absolute difference between performance criterion, with
hi being the rank of the ith dataset. For example if the jth dataset has the largest absolute difference
we set hj = N and if the kth dataset has the smallest absolute difference we set hk = 1. We let
R1 be the sum of the his where method one’s metric is greater than metric two’s and R2 be the sum
of the his where method two’s metric is larger. The test statistic is min(R1, R2), which we do not
report. Instead we report R1 and R2 and the p-value that the two methods do not perform the same
on average. Ri < Rj is indicative of method i performing better than method j.

4.4 Methods

The data were preprocessed by scaling to fit in the unit cube. This scaling technique was chosen over
whitening because of issues with singular covariance matrices. The Gaussian kernel was used for
all density estimates. For each permutation of each dataset, the bandwidth parameter is set using the
training data with a LOOCV line search minimizing DKL

(
fobs||f̂

)
, where f̂ is the KDE based on

the contaminated data and fobs is the observed density. This metric was used in order to maximize
the performance of the traditional KDE in KL divergence metrics. For the SPKDE the parameter β
was chosen to be 2 for all experiments. This choice of β is based on a few preliminary experiments
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Table 1: Wilcoxon signed rank test results
Wilcoxon Test Applied to DKL

(
f̂ ||f0

)
Wilcoxon Test Applied to DKL

(
f0||f̂

)
ε 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

SPKDE 5 0 1 2 0 0 0 37 30 27 21 17 16 17
KDE 73 78 77 76 78 78 78 41 48 51 57 61 62 61

p-value .0049 5e-4 1e-3 .0015 5e-4 5e-4 5e-4 .91 .52 .38 .18 .092 .078 .092
SPKDE 53 59 58 67 63 61 63 14 14 14 10 10 12 12
RKDE 25 19 20 11 15 17 15 64 64 64 68 68 66 66
p-value 0.31 0.13 0.15 .027 .064 .092 .064 .052 .052 .052 .021 .021 .034 .034
SPKDE 0 0 1 1 0 2 0 29 21 19 15 13 9 11
rejKDE 78 78 77 77 78 76 78 49 57 59 63 65 69 67
p-value 5e-4 5e-4 1e-3 1e-3 5e-4 .0015 5e-4 .47 .18 .13 .064 .043 .016 .027

for which it yielded good results over various sample contamination amounts. The construction of
the RKDE follows exactly the methods outlined in the “Experiments” section of Kim & Scott [6].
It is worth noting that the RKDE depends on the loss function used and that the Hampel loss used
in these experiments very aggressively suppresses the kernel weights on the tails. Because of this
we expect that RKDE performs well on the DKL

(
f̂ ||f0

)
metric. We also compare the SPKDE to a

kernel density estimator constructed from samples declared non-anomalous by a level set anomaly
detection as described in Section 2.3. To do this we first construct the classic KDE, f̄nσ and then
reject those samples in the lower 10th percentile of f̄nσ (Xi). Those samples not rejected are used in
a new KDE, the “rejKDE” using the same σ parameter.

4.5 Results

We present the results of the Wilcoxon signed rank tests in Table 1. Experimental results for each
dataset can be found in the supplemental material. From the results it is clear that the SPKDE is
effective at compensating for contamination in the DKL

(
f̂ ||f0

)
metric, albeit not quite as well as

the RKDE. The main advantage of the SPKDE over the RKDE is that it significantly outperforms
the RKDE in the DKL

(
f0||f̂

)
metric. The rejKDE performs significantly worse than the SPKDE

on almost every experiment. Remarkably the SPKDE outperforms the KDE in the situation with no
contamination (ε = 0) for both performance metrics.

5 Conclusion

Robustness in the setting of nonparametric density estimation is a topic that has received little at-
tention despite extensive study of robustness in the parametric setting. In this paper we introduced a
robust version of the KDE, the SPKDE, and developed a new formalism for analysis of robust den-
sity estimation. With this new formalism we proposed a contamination model and decontaminating
transform to recover a target density in the presence of noise. The contamination model allows that
the target and contaminating densities have overlapping support and that the basic shape of the target
density is not modified by the contaminating density. The proposed transform is computationally
prohibitive to apply directly to the finite sample KDE and the SPKDE is used to approximate the
transform. The SPKDE was shown to asymptotically converge to the desired transform. Experi-
ments have shown that the SPKDE is more effective than the RKDE at minimizing DKL

(
f0||f̂

)
.

Furthermore the p-values for these experiments were smaller than the p-values for theDKL

(
f̂ ||f0

)
experiments where the RKDE outperforms the SPKDE.
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