Computer Networks

COSC 6377 Lecture 1

Spring 2014

January 13, 2014

Course Goals

- Overview of the basics
- Principles and Philosophies
- Read research papers
- Hands-on experience with networked systems

Prerequisites

- Undergraduate level networking/OS course
- Some systems programming
- Familiar with Linux environment
- Access to a Linux environment
 - Use department server
 - Use your own machine

Structure

- Lectures
- Paper discussions
- Homeworks
- Projects
- Exams
- Class participation

Homeworks

- 3-4 homeworks
- Concepts
- Calculations
- Some hands-on work
- Allowed to discuss with other students, but you should turn in your own writeup
- Submit through Moodle

Projects

- Two projects
- Build a networked system

- Possible to propose your own project
 - Talk to the instructor before P2 is out

Exams

- No final exam!
- The second exam will cover topics not covered by the first exam
- Open notes
- In-class scheduling
 - Conflicts should be reported by this week

Grades

Exams	40%
Homeworks	15%
Projects	40%
Class Participation	5%

- It is possible to get a C or lower grades
- No incompletes

Readings

- No required textbook
- Recommended texts
 - Computer Networks: A Systems Approach
 - UNIX Network Programming
- Research papers
- Standards
- Wikipedia

Academic Honesty

The work you turn in should be yours

- Acknowledge
 - Group discussions
 - Internet sources

Plagarism results in an F

Course Staff

- Instructor: Omprakash Gnawali
- Office Hours: M 230-330

- TA: Hessam Mohammadmoradi
- Contact: hmoradi@cs.uh.edu
- Office Hours: MW 1030-1200 at PGH313

Communication

- Send questions and answers to Piazza
- Contact TA before contacting the instructor
- Emails MUST have COSC6377 in the subject
- Check course website and Piazza regularly

http://www2.cs.uh.edu/~gnawali/courses/cosc6377-s14/

Some Questions

- How difficult is this course?
- What is the workload?
- Will I learn anything useful?
- Any other questions?

Internet

- What is Internet?
- How did it start?
- How do we use it?
- Where is it going?

Inter-net

- Network of Networks
 - Deficiencies in this classical definition?

http://www.chrisharrison.net

From: http://www.telepresenceoptions.com/2008/04/att-first-service-provider-to/

Connecting the Networks

- Cables
- Even under the sea

http://www.cablemap.info/

A Brief History

- Packet switching technology
- ARPANET and other research projects
- Commercial Internet by the early 90's
- Core networks still owned by a handful of companies
- Reference
 - http://www.zakon.org/robert/internet/timeline/

How do we use it?

- Emails/Facebook
- Phone calls
- Government services
- Connect systems and services

Where is it going?

- More inter-connection
- Internet of Things / Web of things
- More mobile and wireless
- More networked applications

Internet and Us

Internet Map

http://earthobservatory.nasa.gov/Features/Lights/

http://www.chrisharrison.net

http://www.chrisharrison.net

http://www.facebook.com/note.php?note id=469716398919

Accelerating waves

Connected public lighting: moving from dumb to smart network

Traditional lighting operations

Intelligent lighting operations

Physical failure inspection Scouting team drives during night to visually spot failures

Remote monitoring Lighting failures are automatically reported

Paper-based mapping / archiving
Use paper maps and files to manage
maintenance of lighting stock

Smart asset management

by system, saving time and costs

Digital system smartly plans and routes maintenance works to minimize street blockages

Undifferentiated lighting levels Lights burn uniformly throughout night

Smart dimming / scene setting

Lights are dimmed during low-traffic hours to save energy or enhanced in problematic neighborhoods to improve safety

Estimation-based metering

As multiple entities are connected to the grid, energy consumption roughly estimated by the utility

Intelligent metering / billing

Smart meter accurately calculates energy consumption, taking into account varying rates; automatically bills all entities

Efficient transportation

- 1 billion cars on the road today
- 4 billion projected by mid-century
- China: 100 km traffic jam lasts nine days in August 2012
- Sao Paulo, Brazil: traffic jams typically exceed 100 miles; average commute 2–3 hours
- By 2040, 75% of cars will be autonomous

Connected, intelligent cars could boost highway capacity by 273%

Plan for next four weeks

- Review of undergraduate material
- Watch lectures/read slides from COSC4377
 - Cover approx. 5 lectures per week
- Discuss the material in the class
- Grab lectures from:

http://www2.cs.uh.edu/~gnawali/courses/cosc4377-s12/