Dispersion or Variability

How Much Do Distributions or Data Vary?

Charles Peters
University of Houston
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Variability of Numeric Variables

Variance: oT2 =£1(X—u)T2 ],

Standard deviation: o=vo 12 , s=VsT12

Interquartile range: /QR=qguantile(X,.
75)—qguantile(X,.25)

Median absolute deviation: MAD=median{/
X—m/[}, m=median(X)



Robustness

* |QR and MAD are robust measures of
variability. Insensitive to a few outliers.

e Standard deviation is not robust. One
extreme outlier can change its value

drastically.

* All are scale parameters or statistics. When
the scale of measurement is changed, they
change in the same way.



Variability of Categorical Variables
Multinomial Distributions

A categorical variable has 7z possible values,
with probabilities pd1 ,---,pdm, positive and
summing to 1.

Replicate the experiment /A times
independently. Possibly /=1.

Vii =number of occurrences of /T¢t/ outcome.

This is a multinomial experiment and the
random vector Y=(VI{1 ,---,¥im ) has a
multinomial distribution.



Gini Measure of Variability

In the multinomial distribution, each component V{7
has a binomial distribution with variance A/pdi (1—

pii).

pli=1/m,i.e., all category levels are equally likely,
and 0 when some pd/ =1, others = 0.

Note: The maximum value increases with 7.
With data, replace pd7 by its estimate Vii /N .



Entropy Measure of Variability

By continuity, define 0log0=0. Then 0<A<N
logm .

=0 when some pli=1. A=MNogm when all
pdi=1/m . The maximum value increases with
m.

With data, replace pdi by its estimate Vii /.
Then Ais related to the likelihood ratio statistic
for the null hypothesis of equally likely category
levels.



Correlation

To What Extent Are Variables
Related?



Forced Expiratory Volume vs. Height
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Theoretical Covariance and Correlation
Pearson Correlation

* X,V jointly distributed random variables

* Means wdx ,udy, standard deviations alx >0,
aly >0.

* cov(XV)=El(X—pdx )(F—ply)]
o cor(X,Y)=plxy=cov(X)Y)/oglx ogly

o [p[<1, with equality iff aX+5V=cfor
constants g, b, c.



Sample Covariance and Correlation

o rlxy=sixy /slx sly

* Random variables. [7{xy [<1 with equality iff
axli+byli=cforall i
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Spearman’s Rho

Given data (xJ1 w1 ),---(xdm,ydn), rank the xT
"sand also rank the yT' s. Let wdi=rank(xdi)
and vli=rank(yir).

Then calculate the Pearson correlation of the
pairs (xdl,041 ), (udn,vin).
This is Spearman’s rho pis.

If X'and Y are independent, the distribution of
pds does not depend on their distributions.

Provides a nonparametric or distribution-free
test of no association between X and Y.



Kendall’s Tau

* Count the number ¢ of pairs of indices
(z))with i<jand (xdi—xdj)(ydi—yi; )>0.
These are concordant pairs.

* The number & of discordant pairs is p—c,
where p=1/2 n(n—1).

* =c—d/p

* zis distribution free if X'and FYare
independent.
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Variance-Covariance Matrices

Random Vectors



Variance-Covariance Matrix

X1 ,X42 ,--- XIm jointly distributed numeric
variables.

X=(XI1 X2, Xim )Tt e RTmx1 is arandom
vector.

V=V X)=(vilij)ERTmXm , where viij=cov(
X, X )=plijolial/, ply cor(Xii,X1)).

Positive definite, symmetric matrix with positive
eigenvalues, orthogonal eigenvectors.

Given 72 sample observations of X, the sample
variance-covariance matrix / has sample
correlations and standard deviations.



Principal Components

ALl 2442 =---=Adm >0 the ordered
eigenvalues of /.

udl ,ud?2 ,---,udm corresponding orthogonal
unit eigenvectors.

w1l "X, wl2 -X,---,udm X are uncorrelated.
Called the principal components of the
random vector X.

A =var(udl -X), A2 =var(ul2 -X) , etc.




Importance of Principal Components

o Vi=1Tm#EALl =) i=1Tm#var(Xii)

* If the first few largest 447 strongly dominate,
most of the variation of the random vector X
is captured by the first few principal
components.

e Useful as a dimensionality reduction tool.



Fruit Fly Wing Shape
Courtesy Prof. Tony Frankino BIOL/
BCHS

Wing shape is quantified by noting the location
of landmarks defined by the intersection of
veins with each other or the wing margin




Total of 15 landmarks used.



Some of the Variables
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Variances of Principal Components

[1] 0.0922 0.0405 0.0116 0.0054 0.0004 0.0002 0.0001 0.0001 0.0000 0.0000
[11] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[21] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Total variation is 0.15. Top three carry
most of it.



Principal Components by Species



Classification Trees

e Splitting of nodes always decreases Gini or
entropy. So splits always increase “purity” of
terminal nodes.

* Split nodes on single variables, nodes and
variables chosen to maximize the decrease in
total Gini or entropy.

* Stop when the decrease falls below a
threshold or when nodes get too small.



Example

req.ir|r=req
meas>50.04783 strialyn=n
prim.gec=y meas< 0.03103 meas>=0.04071
serr
meas< 0.05467 meas>=0.02855 meas< 0.0276!
micro sm serr

micro Serr micro SmM serr sm



