Research Methods in computer science Fall 2013

Lecture 7

Omprakash Gnawali September 19, 2013

Agenda

Research Conference Updates Distributions/Statistics (live Python) Experiment Design Feedback from HW3 HW4 HW5 and HW6 preview

Metric Design Exercise

Project: Instruction system (HCI)

Goal: Make furniture assembly faster

Possible metrics and experiments?

Metric Survey Exercise

List and define all the metrics used in the ten research papers from HW2.

We will collect them and look at them together in next class.

Figure 1: A map of the test-bed. Each circle is a node; the large number is the node ID, and the superscript indicates which floor of the building the node is on.

De Couto 2013

Run R1: 1 mW, 134-byte packets

Figure 2: When using the minimum hop-count metric, DSDV chooses paths with far less throughput than the best available routes. Each line is a throughput CDF for the same 100 randomly selected node pairs. The left curve is the throughput CDF of DSDV with minimum hop-count. The right curve is the CDF of the best throughput between each pair, found by trying a number of promising paths. The dotted vertical lines mark the theoretical maximum throughput of routes of each hop-count.

De Couto 2013

Deployment Experiments

Realistic setup and inputs

Uncontrolled environment

Repeating Experiments Enough?

High delivery ratio across time (short experiments can be misleading!)

HW5

Write a response to the pamphlet on smart meters.

HW6

Make a list of metrics from the ten research papers you selected

Define each metric in a few sentences.