Research Methods

In computer science
Fall 2013

Lecture 20

Omprakash Gnawali
November 5, 2013

Agenda

Conference Plans
Oral presentations
Paper Introduction and Related Work

Feedback

Three essential components

Summary
Strength
Weakness

Should cover style and substance

Presentation Order

Behrang Mehrparvar

Cheng Wang n-2 and n-1 gives

Daxiao Liu

Dong Han feedback for n

Jeremy A Kemp
Li Wei
Qiang Li

Rengan Xu | Take notes for
SeyyedHessamAldin

MohammadMoradi HW]_O

Shengrong Yin
Tao Feng
Xianping Zhou
Xiaonan Tian

How to write a
great research paper

Simon Peyton Jones
Microsoft Research, Cambridge

Increasing importance

Writing papers is a skill

Many papers are badly written

* Good writing is a skill you can learn

It" s a skill that is worth learning:

— You will get more brownie points (more papers
accepted etc)

— Your ideas will have more impact
— You will have better ideas

Writing papers: model 1

Writing papers: model 2

e

* Forces us to be clear, focused
* Crystallises what we don’ t understand

* Opens the way to dialogue with others: reality
check, critique, and collaboration

Do not be intimidated

Fallacy You need to have a fantastic idea before
you can write a paper. (Everyone else
seems to.)

Do not be intimidated

s Writing the paper is how you develop the idea in
the first place

= It usually turns out to be more interesting and
challenging that it seemed at first

The purpose of your paper

Papers communicate ideas

* Your goal: to infect the mind of your reader
with your idea, like a virus

* Papers are far more durable than programs

(think Mozart) @_

The Idea

ldea
A re-usable insight,
useful to the reader

* Figure out what your idea is

* Make certain that the reader is in no doubt
what the idea is. Be 100% explicit:

— “The main idea of this paperis...."

— “In this section we present the main contributions
of the paper.”

 Many papers contain good ideas, but do not
distil what they are.

One ping

Your paper should have just one “ping’ : one
clear, sharp idea

Read your paper again: can you hear the
“ping”?
You may not know exactly what the ping is

when you start writing; but you must know
when you finish

If you have lots of ideas, write lots of papers

Thanks to Joe Touch for “one ping”

The purpose of your paper is not...

= Your reader does not have a WizWoz

= She is primarily interested in re-usable
brain-stuff, not executable artefacts

Your narrative flo

Here is a problem
t’ s an interesting problem

t’ s an unsolved problem

Here is my idea
My idea works (details, data)

Here' s how my idea compares to other
people’ s approaches

Structure (conference paper)

Title (1000 readers)

Abstract (4 sentences, 100 readers)
Introduction (1 page, 100 readers)

The problem (1 page, 10 readers)

My idea (2 pages, 10 readers)

The details (5 pages, 3 readers)

Related work (1-2 pages, 10 readers)
Conclusions and further work (0.5 pages)

The abstract

| usually write the abstract last

Used by program committee members to
decide which papers to read

Four sentences [Kent Beck]

Say w
Say w

= w e

Say w

State the problem

hy it’ s an interesting problem
hat your solution achieves

nat follows from your solution

Abstract - Example

Many papers are badly written and
hard to understand. This is a pity,
because their good ideas may go
unappreciated. Following simple
guidelines can dramatically improve
the quality of your papers. Your work
will be used more, and the feedback
you get from others will in turn
improve your research

Structure

Abstract (4 sentences)

Introduction (1 page)

The problem (1 page)

My idea (2 pages)

The details (5 pages)

Related work (1-2 pages)

Conclusions and further work (0.5 pages)

The introduction (1 page)

1. Describe the problem
2. State your contributions
...and that is all

ONE PAGE!

Describe the problem

1 Introduction

. . . o Use an

There are two basic ways to implement function application in
a higher-order language, when the function is unknown: the example
push/enter model or the eval/upply model [11]. To illustrate the
difference, consider the higher-order function zipWith, which zips to
together Fwo lists, using a function k to combine corresponding list introduce
elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c] the

zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys

Here k is an unknown function, passed as an argument; global flow
analysis aside, the compiler does not know what function k is bound
to. How should the compiler deal with the call k x y in the body
of zipWith? 1t can’t blithely apply k to two arguments, because
k might in reality take just one argument and compute for a while
before returning a function that consumes the next argument; or k
might take three arguments, so that the result of the zipWith is a
list of functions.

State your contributions

Write the list of contributions first

The list of contributions drives the entire

paper: the paper substantiates the claims
you have made

Reader thinks “gosh, if they can really

deliver this, that’ s be exciting; I’ d better
read on”

State your contributions

Which of the two is best in practice? The trouble is that the eval-
nation model has a pervasive effect on the implementation, so it is
too much work to implement both and pick the best. Historically,
compilers for strict languages (using call-by-value) have tended to
use eval/apply, while those for lazy languages (using call-by-need)
have often used push/enter, but this is 90% historical accident —ei-
ther approach will work in both settings. In practice, implementors
choose one of the two approaches based on a qualitative assessment
of the trade-offs. 1n this paper we put the choice on a firmer basis:

e We explain precisely what the two models are, in a common
notational framework (Section 4). Surprisingly, this has not
been done before.

e The choice of evaluation model affects many other design
choices in subtle but pervasive ways. We identify and dis-
cuss these effects in Sections 5 and 6, and contrast them in
Section 7. There are lots of nitty-gritty details here, for which
we make no apology — they were far from obvious to us, and
articulating these details is one of our main contributions.

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, principally be-
cause push/enter requires a stack like no other: stack-walking

Bulleted list of
contributions

Do not leave the reader to
guess what your
contributions are!

Contributions should be refutable

NO| YES!
We describe the WizWoz | We give the syntax and semantics of
system. It is really cool. a language that supports concurrent

processes (Section 3). Its innovative
features are...

We study its properties We prove that the type system is
sound, and that type checking is
decidable (Section 4)

We have used WizWoz in We have built a GUI toolkit in
practice WizWoz, and used it to implement a
text editor (Section). The result is
half the length of the Java version.

The answers to these questions form the fundamental contrib-
utions of this paper:

¢ Detailed examination of where energy goes reveals that over 50%
of the electricity is spent on computing. PC’'s account for 17% of the
bill despite the fact that their utilization is very low. Networking
equipment comes at 3.5% and shows no temporal changes despite
variations in traffic load.

e Data analysis shows that estimating savings based on a few iso-
lated desktop measurements is prone to errors due to the wide
spread of PC power draws. Assuming that a day of power is rep-
resentative and using it to calculate yearly values can be off by as
much as 20%.

e Our deployment and data studies expose the relative importance
of device coverage versus duration of deployment. Once a deploy-
ment is past the first month of data collection, one must prioritize
the ‘what to measure’ question over the time scale of the study.

Some examples

Al

Introduction — Another take

. What is the problem?

Why is it interesting and important?
Why is it hard?

Why hasn’t it been solved before?
What are the key components of my
approach and results?

Courtesy Jennifer Widom

’

No “rest of this paper is...’

* Not: “The rest of this paper is structured as
follows. Section 2 introduces the problem.

Section 3 ... Finally, Section 8 concludes”.

* Instead, use forward references from the
narrative in the introduction.
The introduction (including the contributions)
should survey the whole paper, and therefore
forward reference every important part.

Related work

Fallacy To make my work look good, | have
to make other people’ s work look
bad

The truth: credit is not like money

Giving credit to others does not
diminish the credit you get from your

paper
= Warmly acknowledge people who have helped
you

= Be generous to the competition. “In his
inspiring paper [Foo98] Foogle shows.... We
develop his foundation in the following ways...”

= Acknowledge weaknesses in your approach

Credit is not like money

Failing to give credit to others can
kill your paper

If you imply that an idea is yours, and the
referee knows it is not, then either

= You don' t know that it’ s an old idea (bad)

= You do know, but are pretending it’ s yours
(very bad)

Related Work

* Collect papers

— Identify related papers and their related
papers and their related papers...

— ACMY/IEEE libraries
— Google/Google Scholar
* Organize the papers
— Use some structure (tables, graphs, etc.)

* Relate to each work/group you
mention

Related Work - Common Structure

Sub sections (3-4)
Discuss 1-5 papers per subsection
It is ok to have “Other” subsection

Try to have subsection titles but at least
have separate paragraphs

Low-power Sensornet Research

Approaches Systems

Application AppSleep, TinyDB

Network FPS, SPAN, GAF, ASCENT, MT, ETX,
Energy Routing Metrics

MAC S-MAC, T-MAC, B-MAC, STEM, X-MAC,
SCP-MAC, PAMAS, Piconet, Dozer, Koala

0OS TinyOS Scheduler

Hardware

Trio and Prometheus

Prior Work

Control Plane Data Plane
ETX, MT, Flush, RMST,
MultiHopLQl, EAR, CODA, Fusion,
LOF, AODV, DSR, IFRC, RCRT
BGP, RIP, OSPF,

Babel

Link Layer

36

