Research Methods

In computer science
Fall 2013

Lecture 21

Omprakash Gnawali
November 7, 2013

Agenda

Conference Plans

Paper writing (Expts and Evaluation)
Paper review

HW11 questions

HW12

How to write a
great research paper

Simon Peyton Jones
Microsoft Research, Cambridge

Structure (conference paper)

Title (1000 readers)

Abstract (4 sentences, 100 readers)
Introduction (1 page, 100 readers)

The problem (1 page, 10 readers)

My idea (2 pages, 10 readers)

The details (5 pages, 3 readers)

Related work (1-2 pages, 10 readers)
Conclusions and further work (0.5 pages)

Structure

Abstract (4 sentences)

Introduction (1 page)

The problem (1 page)

My idea (2 pages)

The details (5 pages)

Related work (1-2 pages)

Conclusions and further work (0.5 pages)

Contributions should be refutable

NO| YES!
We describe the WizWoz | We give the syntax and semantics of
system. It is really cool. a language that supports concurrent

processes (Section 3). Its innovative
features are...

We study its properties We prove that the type system is
sound, and that type checking is
decidable (Section 4)

We have used WizWoz in We have built a GUI toolkit in
practice WizWoz, and used it to implement a
text editor (Section). The result is
half the length of the Java version.

Al

Introduction — Another take

. What is the problem?

Why is it interesting and important?
Why is it hard?

Why hasn’t it been solved before?
What are the key components of my
approach and results?

Courtesy Jennifer Widom

Related work

Fallacy To make my work look good, | have
to make other people’ s work look
bad

The truth: credit is not like money

Giving credit to others does not
diminish the credit you get from your

paper
= Warmly acknowledge people who have helped
you

= Be generous to the competition. “In his
inspiring paper [Foo98] Foogle shows.... We
develop his foundation in the following ways...”

= Acknowledge weaknesses in your approach

Credit is not like money

Failing to give credit to others can
kill your paper

If you imply that an idea is yours, and the
referee knows it is not, then either

= You don' t know that it’ s an old idea (bad)

= You do know, but are pretending it’ s yours
(very bad)

Related Work

* Collect papers

— Identify related papers and their related
papers and their related papers...

— ACMY/IEEE libraries
— Google/Google Scholar
* Organize the papers
— Use some structure (tables, graphs, etc.)

* Relate to each work/group you
mention

Related Work - Common Structure

Sub sections (3-4)
Discuss 1-5 papers per subsection
It is ok to have “Other” subsection

Try to have subsection titles but at least
have separate paragraphs

Presenting the idea

3. The idea

Consider a bifircuated semi-lattice D, over a

hyper-modulated signature S. Suppose p; is an
element of D. Then we know for every such p;
there is an epi-modulus j, such that p; < p;.

= Sounds impressive...but
= Sends readers to sleep

= Tn a paper you MUST provide the details,
but FIRST convey the idea

Presenting the idea

Explain it as if you were speaking to someone
using a whiteboard

Conveying the intuition is primary, not
secondary

Once your reader has the intuition, she can
follow the details (but not vice versa)

Even if she skips the details, she still takes
away something valuable

Putting the reader first

Do not recapitulate your personal journey of
discovery. This route may be soaked with
your blood, but that is not interesting to the
reader.

Instead, choose the most direct route to the
idea.

The payload of your paper

The Simon PJ question:

Using examples thereanytypewriter

2 Background

To set the scene for this paper, we begin with a brief overview of
the Scrap your boilerplate approach to generic programming. Sup-
pose that we want to write a function that computes the size of an
arbitrary data structure. The basic algorithm is “for each node, add
the sizes of the children, and add 1 for the node itself”. Here is the

entire code for gsize: Exam ple
gsize :: Data a => a -> Int r|ght
gsize t = 1' + sum (ngEpQ gsize t) . away
The type for gsize says that it works over any type a, provided a
is a data type — that is, that it is an instance of the class Data!
The definition of gsize refers to the operation gmapQ, which is a
method of the Data class:
class Typeable a => Data a where
...other methods of class Data...
gmapQ :: (forall b. Data b => b -> 1r) -> a -> [r]

Diagrams to help explain the concepts

dir4 dir2
A Group 2
an [p—
. I | l
dir1 '_d_lr_z_ !
Group 1
Zone 1 Zone 2 Zone 3 Zone 4

Figure 3: Directories are the unit of data movement between
Paxos groups.

The details: evidence

Your introduction makes claims

The body of the paper provides evidence to
support each claim

Check each claim in the introduction, identify
the evidence, and forward-reference it from
the claim

Evidence can be: analysis and comparison,
theorems, measurements, case studies

Describing Experiment

Sufficient details for an expert in your
field to redo the experiment.

Datasets, Systems, Code version, Algorithms

Something seemingly unimportant might
be important!

In our experiments on frame-semantic parsing, we use two sets of data:

1. SemEval 2007 data: In benchmark experiments for comparison with previous
state of the art, we use a dataset that was released as part of the SemEval 2007
shared task on frame-semantic structure extraction (Baker, Ellsworth, and Erk
2007). Full text annotations in this dataset consisted of a few thousand sentences

containing multiple targets, each annotated with a frame and its arguments. The

2. FrameNet 1.5 release: A more recent version of the FrameNet lexicon was released
in 2010.2 We also test our statistical models (only frame identification and argu-
ment identification) on this dataset to get an estimate of how much improvement
additional data can provide. Details of this dataset are shown in the second
column of Table 1. Of the 78 documents in this release with full text annotations,
we selected 55 (19,582 targets) for training and held out the remaining 23 (4,458
targets) for testing. There are fewer target annotations per sentence in the test set
than the training set.” Das and Smith (2011, supplementary material) give the

names of the test documents for fair replication of our work. We also randomly

7. Experiments

Section 7.1 details the datasets, experimental set-up, and classifiers used. We first compare
the proposed methods to construct sets A of measure 7, reported in Section 7.2, and the
proposed estimation methods for the moments of Px|,, reported in Section 7.3. Then in
Section 7.4, we show that applying a dimensionality reduction method can greatly reduce
the computation needed at test time. Lastly, we compare our recommended reliable classifier
to other approaches to early classification.

7.1 Experimental Set-up and Details

We demonstrate performance using all of the time-series datasets available on the UCR
Time-Series Classification and Clustering Page (E. Keogh and Ratanamahatana, 2006)

5 Evaluation

We first measure Spanner’s performance with respect to
replication, transactions, and availability. We then pro-
vide some data on TrueTime behavior, and a case study
of our first client, F1.

5.1 Microbenchmarks

Table 3 presents some microbenchmarks for Spanner.
These measurements were taken on timeshared ma-
chines: each spanserver ran on scheduling units of 4GB
RAM and 4 cores (AMD Barcelona 2200MHz). Clients
were run on separate machines. Each zone contained one
spanserver. Clients and zones were placed in a set of dat-
acenters with network distance of less than 1ms. (Such a
layout should be commonplace: most applications do not
need to distribute all of their data worldwide.) The test
database was created with 50 Paxos groups with 2500 di-
rectories. Operations were standalone reads and writes of
4KB. All reads were served out of memory after a com-
paction, so that we are only measuring the overhead of
Spanner’s call stack. In addition, one unmeasured round
of reads was done first to warm any location caches.

Graphs

Refer to each graph or figure in the text
Describe what is on the graph

Also
What do we learn?
Why does this happen?
Exceptions?

Caption

Watch for redundancy between labels,
legends and caption

Essential: short summary of what we
learn

Epsilon (ms)

1 1

BARRSaesme nasas EE RS R T T T T
Mar 29 Mar 30 Mar 31 Apr 1 6AM 8AM 10AM 12PM

Date Date (April 13)

Figure 6: Distribution of TrueTime e values, sampled right
after timeslave daemon polls the time masters. 90th, 99th, and

99.9th percentiles are graphed.

An Extreme Example...

1000 -
Lithium Battery
Indoor Solar
100 |
=3
2
) 10 |
3
o
S 1k i
o
(]
>
< 01
0.01 1 1 1 1
0.5 1 1.5 2 2.5

Principal Node Dimension (cm)

Figure 1: An energy-harvesting reality check. Shows how
power harvested from indoor solar compares with power
drawn from an internal battery. As a cubic sensor’s length
L falls below a centimeter, a solar cell of size L? can de-
liver higher average power than a Lithium battery of size L?,
over a seven year horizon. The key to continued sensor scal-
ing lies in shifting the primary energy supply from battery
to solar, and dealing with the implications of a dramatically
reduced supply.

g 1.4M -

> 1 ---0-- non-leader

g‘ 1.2M leader-soft

S 1M ---o-- leader-hard 4 °

7] 7 P o

"g 800K - 08

8 i) 0

o 600K A 00 .o

Z s 0 o

T 400K - 00 o

= . oaO"o- 0-°

g 200K - 0
. 'o'

o ? L) T T L l L L) L L) I Ll L) T L I L L) L Ll I
0 5 10 15 20

Time in seconds

Figure 5 illustrates the availability benefits of running
Spanner in multiple datacenters. It shows the results of
three experiments on throughput in the presence of dat-
acenter failure, all of which are overlaid onto the same
time scale. The test universe consisted of 5 zones Z;,
each of which had 25 spanservers. The test database was
sharded into 1250 Paxos groups, and 100 test clients con-
stantly issued non-snapshot reads at an aggregrate rate
of 50K reads/second. All of the leaders were explic-
itly placed in Z;. Five seconds into each test, all of
the servers in one zone were killed: non-leader kills Z5;
leader-hard kills Z1; leader-soft kills Z,, but it gives no-
tifications to all of the servers that they should handoff
leadership first.

Killing Z, has no effect on read throughput. Killing
Z1 while giving the leaders time to handoff leadership to

a different zone has a minor effect: the throughput drop
is not visible in the graph, but is around 3-4%. On the
other hand, killing Z; with no warning has a severe ef-
fect: the rate of completion drops almost to 0. As leaders
get re-elected, though, the throughput of the system rises
to approximately 100K reads/second because of two ar-
tifacts of our experiment: there is extra capacity in the
system, and operations are queued while the leader is un-
available. As a result, the throughput of the system rises
before leveling off again at its steady-state rate.

We can also see the effect of the fact that Paxos leader
leases are set to 10 seconds. When we kill the zone,
the leader-lease expiration times for the groups should
be evenly distributed over the next 10 seconds. Soon af-
ter each lease from a dead leader expires, a new leader is
elected. Approximately 10 seconds after the kill time, all
of the groups have leaders and throughput has recovered.
Shorter lease times would reduce the effect of server
deaths on availability, but would require greater amounts
of lease-renewal network traffic. We are in the process of
designing and implementing a mechanism that will cause
slaves to release Paxos leader leases upon leader failure.

Visual structure

* Give strong visual structure to your paper
using
— sections and sub-sections
— bullets
— italics
— laid-out code

* Find out how to draw pictures, and use
them

Visual structure

Info pointer
®

Payload

Info table
> @——» Entrycode

Object type
Layout info

Type-specific
fields

Figure 3. A heap object

The thiee cases above do not exhaust the possible forms of f. 1t
might also be a THUNK, but we have alieady dealt with that case
(rule THUNK). 1t might be a CON, in which case there cannot be any
pending atguments on the stack, and rules UPDATE ot RET apply.

4.3 The eval/apply model

The last block of Figure 2 shows how the eval/apply model deals
with function application. The first three rules all deal with the case
of a FUN applied to some atguments:

e 1f there are exactly the night number of arguments, we behave
exactly like rule KNOWNCALL, by tail<alling the function.
Rule EXACT s still necessary — and indeed has a ditect coun-
terpatt in the implementation — because the function might
not be statically known.

e 1f there are too many atguments, rule CALLK pushes a call

remaindet of the object is called the puyloud, and may consist of
a mixture of pointers and non-pointers. For example, the object
CON(C ay...an) would be represented by an object whose info
pointer represented the constructor C and whose payload is the at-
guments) ...dy.

The info table contains:

e Exccutable code for the object. For example, a FUN object
has code for the function body.

e An object-type field, which distinguishes the vatious kinds of
objects (FUN, PAP, CON ectc) from each other.

e layout information for garbage collection putposes, which
describes the size and layout of the payload. By “layout™ we
mean which fields contain pointers and which contain non-
pointets, information that is essential for accutate garbage col-
lection.

e Type-specific information, which varies depending on the ob-
ject type. For example, a FUN object contains its anty; a
CON object contains its constructor tag, a small integer that
distinguishes the different constructors of a data type; and so
on.

1n the case of a PAP, the size of the object is not fixed by its info
table; instead, its size is stored in the object itself. The layout of its
ficlds (e.g. which are pointers) is described by the (initial segment
of) an argument-descriptor field in the info table of the FUN object
which is always the first field of a PAP. The other kinds of heap
object all have a size that is statically fixed by their info table.

A very common opetation is to jump to the entry code for the object,
so GHC uses a slightly-optimised version of the representation in
Figure 3. GHC places the info table at the addresses immediately

Use the active voice

The passive voice is “respectable” but it DEADENS
your paper. Avoid it at all costs.

NO YES

It can be seen that... We can see that...
34 tests were run We ran 34 tests
These properties were We wanted to retain these

thought desirable properties
It might be thought that You might think this m

this would be a type error be a type error

Use simple, direct language

NO YES

The object under study was

displaced horizontally U2 23l (ees Sl e

On an annual basis Yearly
Endeavour to ascertain Find out

It could be considered that the
speed of storage reclamation
left something to be desired

The garbage collector was really
slow

Feedback

Three essential components

Summary
Strength
Weakness

Should cover style and substance

Paper Review

Papers are judged for
Novelty
Technical Rigor
Claims and their proofs

Fatal flaws

Provide detailed comments to the authors
to improve the next version of the paper

Some examples
Commenting software systems
Sample reviews

