Declarative Languages - August 28, 2008
This class is going to cover the following 4 models/paradigms of Programming Languages:
· Imperative, Functional, Object Oriented, and Logic Based

First, What is a Programming Language (PL) ?

Some suggestions:

· A high level way of writing machine code
· An interface to the machine

 Answer:

· It is a system of notations for describing computations

 By ‘describing’ we mean for human readers and writers to easily comprehend. This is a measurement of how easy it is for a human to use and understand the features.

 By ‘computations’ we are at a machine-centered perspective. This is a measurement of how efficient the language is from the machine's point of view.

 PLs try to strike a balance between efficiency and understandability. The ideal PL would combine the best of both of these. The amount of PLs today is a reflection of how designers try to find the appropriate balance of the two.

 Two extreme examples of PL:
· What is the most efficient language?

· Machine language: this is the best for machines, but has no structure for humans to easy follow

· What is the best for humans?

· Natural Languages?: easier for humans to understand, but not precise enough for use. Natural Languages are ambiguous.

· Mathematics?: a system of notations is very precise and is not ambiguous, but is generally not implementable in its full generality.

· A subset of Mathematics: very precise and very good at describing, but the efficiency of implementation is not great.

· Prolog: a subset of First-Order Logic (Horn – clause logic)

Difficulties in studying PL
 There are too many languages, each with too many features to study. However, there is no need to learn all these features.

 All languages are based on certain principles. When studying PLs, center on these principles and look at the main differences.
 Examples of common features:

1. Mechanisms for dynamically updating storage

2. Introducing symbolic names (i.e. variables or identifiers)

3. Mechanisms for transferring control

4. Structuring data

5. Defining procedures

4 Models/Paradigms of PLs

1. Imperative:

· The first model to come out
· Based on sequential execution of commands and the use of changeable memory/data storage (the von Neuman model)

· Inspired from the machine language level, it is the easiest to translate

· Languages: C, Pascal, FORTRAN, Cobol

Changeable memory/data storage: The whole language structure is based on the assignment command. All other features are designed to carry out certain assignments on certain memory locations. Being able to change the stored value of an identifier is the idea behind changeable memory.
2. Functional :

· Focus is on the operations that need to be carried out and their sequencing or composition
· Operations are also called functions

· Examples of functions: Searching for elements in a data structure or sorting them for efficiency

· Pure functional programming has NO assignments

· Languages: FP, ML, Alice, Hope, Haskell, Miranda, CAML, OCAML (Object Oriented CAML)

3. Object Oriented:

· Focus is on describing the objects and how they interact via messages or shared memory
· Example: A program to manage course enrollment could have an object for students and one for courses, each with their own properties.

· Languages: C++, Java, Simula, SmallTalk

4. Logic Based:

· Uses some subset of logic

· Languages:

i. Eqlog is based on equational logic

ii. Prolog is based on Horn-clause logic

iii. Rule-based-programming is based on equational logic

1. Uses equations or identities as rules

sin2 θ + cos2 θ = 1 …

sin2 θ + cos2 θ (1
2. Replaces these left-hand sides with corresponding right-hand sides
sin2 45 + cos2 45 + sin2 30 + cos2 30 …

 1 + 1

3 Things to study when learning a PL
1. Syntax – forms and rules

2. Semantics – meanings

3. Pragmatics – history of PL, implementation issues, and software engineering

Brief History of PLs and their key contributions
1. FORTAN – “Formula Translator”

Late 50s – 60s

a. Identifier (variable) and assignment statement

b. Concept of types

c. Modularity thru use of non-recursive subprograms

d. Formatted I/O
John Backus - first designer of language

John Cocke – first creator of compiler

2. Cobol – “Common Business-oriented Language”

Late 60s
a. Data structuring
b. Readability thru syntactic sugaring

i. Fortan: A = B + C

ii. Cobol: add B to C and store in A

c. Features for file description and manipulation
d. Record data structure

3. Algol 60 – “Algorithmic Language”

70’s
a. Block structure, grouping commands together

b. Explicit type declarations for identifiers, rather than predefined types based on constants (i.e. variable beginning in I, J, K, L, M, N are integer types).

c. Scope rules for identifiers

d. Dynamic lifetime for identifiers

e. Parameter passing: call-by-name, call-by-value

f. Nested if-then-else statements

4. Lisp – “List Processing”

~67
a. Recursion

b. Dynamic binding, rather than static

c. List processing

d. First language based on a mathematical model of computation

i. Based on λ – calculus (lambda calculus)

Everything in Lisp is a list, even the program itself. Lisp programs can easily work on other Lisp programs as data. Hence Lisp interpreters are easier to write, for example.
Created by John McCarthy.

References
Robert Sebesta, Programming Languages

Ravi Sethi, Programming Languages: Concepts and Paradigms

Peter Wegner, Programming Languages: The First 25 years, IEEE Transactions on Computers, Dec. 1976
Notes:�Concepts behind Java came out in the late 1960’s and 70's�Object Oriented traces back to 1967 with the first use of classes

Notes: �All the above languages are Turing complete, meaning anything that can be carried out in a Turing machine can be done in one of these languages.

