COSC 6352 - Declarative Programming Languages
Lecture Notes from Dr. Rakesh Verma
Scribe: Alamu

Lecture date: Sep 23, 2008 Page: 1 of 4
Lecture Time: 11:30 AM – 01:00 PM

__

Semantics of call-by-name through textual substitution rules (inspired from macros)

Textual Substitution has problems. Problem – Free variables of procedure and of the actual parameter expression. – 2 renaming rules

Why is call-by-name interesting?

1. It is part of λ - Calculus.

2. An example to motivate call-by-name

 function sum (a, b : integer ;var i : integer ; f : real) : real;

 var s : real;

 begin

 s := 0;

 for I := a to b do

 s := s + f;

 sum := s;

 end;

 f is a name parameter

 var j : l..n;

 p, q : array[1..n] of real;

 call sum(1, n, j, p[j]*q[j])

What is the result?

Plugin sum function where it is called by substitution of actual parameters.

Suppose j = 5 here is result => p[5] * q[5] ?

Actual result => summation i = 1 to n p[i] * q[i] , as i and j share the same location.

Textual Substitution or call-by-name is a lazy evaluation + repeated evaluation.
We could simulate the above example as follows:
function sum (a, b : int ; function f (i : int) : real) : real;

 var s : real;

 i : = integer;

 begin

 s := 0;

 for i := a to b do

 s := s + f(i)

 sum : = s;

 end;

call – sum (1, n, function (j : int) : real; p[j] * q[j])

The function which is inside the procedure parameter is procedure abstract or anonymous procedure.

This procedure returns p[j] * q[j] given j.

Semantics of call-by-name
The name parameter is bound to an anonymous procedure (such procedures are called thunks) that evaluate the actual parameter expression whenever the value of the corresponding formal parameter is needed.

The above semantics is much cleaner but it still has lazy evaluation and repeated evaluation.

function andthen (x, y : boolean) : boolean;

 begin

 if x then andthen := y else

 andthen := false;

 end;

Any benefit from the above function? Sequential and; y is evaluated only when x is true (lazy evaluation feature has benefits) save a lot of work and also changes the termination characteristics.

Lazy evaluation is used in some functional languages.

Other parameter passing mechanisms

Combination of call-by-value and call-by-reference

If the actual parameter is an l-expression then formal parameter is bound to the l-value otherwise to the r-value. – avoids copying especially arrays – used by Fortran and PL/I

Call-by-value-result (also called copy-restore)

If actual parameter is l-expression do call-by-value (i.e) at first call-by-value

At procedure exit if actual parameter is an l-expression then the r-value of the formal parameter is copied into l-value of actual parameter – used by Fortran.

Call-by-reference – formal and actual parameters share the same location

Call-by-value-result –formal and actual parameters have different locations

Run time storage allocation (Pragmatic or implementation issue)

Blocks and procedures

Blocks are easier because they have only one entry and exit point unless there are jumps.

On entry you allocate and on exit you deallocate. This works well for local variables.

For non-local’s – free id’s of block ? we will use the technique of procedures.

2 approaches to handle blocks
1. Blocks as procedures with no parameters.
2. Have a specialized method for blocks.

In nested blocks, when you jump from inner block to outer block you deallocate but when you jump from outer block to inner block, you need rules for intermediate blocks.

Each block has an activation record (AR) that is pushed into stack.

Blocks – parameterless procedures (assumption)

Procedures

Static binding with no nested procedures

Free id’s will be found in global variables.

Any free id is in the body of the program in which the procedure is nested.

At compile time we can allocate a static area of memory for all the free id’s.

For C language

Replace free id’s with pointers; for local identifiers there will be an activation record.

