COSC 6352: Declarative Programming Languages

Lecture 09/30/08 by Dr. Rakesh Verma

Scribe: Susu Liao page 1 of 3

Var I1: I2;

proc I0(I1 : I2)
Begin

begin

I1 :=E;

C

C

end;

End

begin

Here, Identifier binding &execution

I0(E)

Of sequence commands in the scope

End

of that binding.

These two are equivalent provided that I0 is not free in C or E.

The underlying semantic notions for both parameters & definition mechanisms are expression evaluation & identifier binding. (Principle of correspondence:) For any parameter passing mechanism an analogous definition mechanism is possible & vice versa.
Var declaration of Pascal corresponds to call-by-value.

Question: Is there definition mechanism in C or Pascal corresponding to call-by-reference?

---No! There is no direct definition mechanism for call-by-reference. You can simulate it by introducing a procedure.
Definition structuring mechanisms Or Composite Definitions
(1) Sequential composition

Const i = j;

J= -i;

If i=5 & j=3, after execution, i=3, j=-3

(2) Simultaneous composition: all definitions are interpreted relative to original environment.

Const I = j;

J = -I;

If i=5 & j=3, after execution, i=3, j=-5
Definition block

In all the definition, structuring mechanisms so far the names bound in each definition are also bound in the resulting environment. However, it is possible to have definitions qualifying other definitions. Private D1 within D2 - resulting environment will have only the bindings of D2 [bindings of D1 are not visible]

(Pseudo) Random number generator:

Private

Var a: integer = seed mod d;

Within

Proc draw (var x: read);

Begin

a:= a*m mod d;

x:= a/d

end

resulting environment can access only to draw but a.
var a: int

a can be accessed after process.

proc draw

a will be allocated every time when process is called.

Not equivalent to local a & not equivalent free id a.

.

.

 bindings more than once
a can be accessed in resulting environment

.

end

`

Recursive Definition: If the name bound by a definition can be used in the definition then we have recursion.

With L do C: this is also a form of block because of implicit bindings.

In Algol W & Algol 68, the for loop is a form of block. labeled command is a form of block (definitions of blocks bindings of commands)

Block = bindings + commands

Principle of qualification
Similar relationship (as in Principle of correspondence) holds between bodies of abstractions & bodies of blocks (both are constructs prefixed or qualified by definition)
Proc p (I: I’)

var I: I’

Begin

begin

C

C

End

end

In both cases, C is qualified by a local bounding of I to new storage.

For any abstraction mechanism, we can have a corresponding form of block & vice versa.

POA & POQ gives any meaningful syntactic class S can be the body of a block (s – block).

We can have expression blocks, definition blocks … …
Definition procedures ---- Classes! In OOP

Class I (…; Pi; …)

D

End;

Class random (seed: integer);

Private

Var a: int

{insert previous code here}

Random(i);

Random(j);----problem: 2 invocations of random are associated with the same generator.
------We should have class valued variables.

p.random(i)—create a random generator p

q.random(j)—create a random generator q.

begin

p.draw (r);

q.draw (r) ;

In Simula, this is called block prefixing.

Sequencers (Jumps)

Nontermination! The effect of these two is global.
Errors!

The entire program is affected.

Third class – sequencers -----effect of this is local. So we need to adjust the semantics.

We introduce the domain of continuations. [semantic counterpart of a point in the program]

A continuation of a computation is whatever comes after it expressed as a function of the result expected for that computation.

Ex 1: <e, s> <e, s’>
C1;
C2

The continuation of C1 starts with an exec of C2 relative to the store resulting from exec of C1. The continuation of execution of C2 is the continuation of whole construct.
