
Data Centric, Position-Based Routing In Space Networks
Omprakash Gnawali

�

, Mike Polyakov
�

, Prasanta Bose
�

, and Ramesh Govindan
�

�

Department of Computer Science, University of Southern California
941 W. 37th Place, Los Angeles, CA 90089

gnawali@usc.edu and ramesh@usc.edu�

Lockheed Martin Corporation
1111 Lockheed Martin Way, Sunnyvale, CA 94089

michael.v.polyakov@lmco.com and prasanta.bose@lmco.com

Abstract—Envisioned space exploration systems and planned
space science missions involve increasingly large number of
satellites and surface rovers/sensors communicating for co-
ordinated science operations or for on-demand commanding
and/or transfer of data. Current approaches that use static
routing cannot scale to large numbers of satellites and space-
crafts of future missions. This requires a dynamic approach
that can discover networks and links as they become avail-
able and intelligently use them for routing. Furthermore,
most of the science missions will be geared towards collect-
ing data using various sensors. Adoption of a data-centric
communication mechanism can enable in-network aggrega-
tion and processing which help make data forwarding more
efficient. In this paper, we briefly describe ASCoT, a routing
system for science missions of tomorrow, which a) leverages
the predictability of satellite trajectories to effect position-
based routing in the space backbone, and b) departs from
traditional address-centric communication and uses a data-
centric architecture to enable energy efficient and low latency
operation in proximity networks. Our simulation study using
STK/OPNET shows that ASCoT architecture is viable.

TABLE OF CONTENTS

1 INTRODUCTION

2 RELATED WORK

3 WHY NOT INTERNET ROUTING?

4 ASCOT ARCHITECTURE

5 IMPLEMENTATION STRUCTURE

6 SIMULATION EXPERIMENTS

7 CONCLUSIONS AND FUTURE WORK

8 ACKNOWLEDGEMENTS

1. INTRODUCTION

In the space exploration and science missions of the fu-
ture, a large number of spacecrafts, rovers and sensor nodes
on planetary surfaces will need to interact seamlessly for
on-demand commanding, coordination, and transfer of data.
Current approaches based on planned communication routes
among space assets are inadequate to meet the on-demand

0-7803-8870-4/05/$20.00/ c
�

2005 IEEE
IEEEAC paper # 1219, Version 3.14, Updated December 10, 2004

and resource optimizing communication constraints, espe-
cially with such large number of nodes.

Static routing has been the method of choice for most routing
in space networks. Network engineers manually program the
routing tables into the nodes. When a node receives a packet,
it looks up its routing table and decides the next hop for that
message. This technique works well if the nodes and links as
well as traffic characteristics are fixed and well-known ahead
of time. Static routing also works well for inter-node commu-
nication in a formation flying system. But if new satellites be-
come available, routing tables on nodes that need to commu-
nicate with that satellite need to be changed. Newly deployed
nodes might also provide an alternate path for communication
and better communication services such as higher bandwidth.
It is possible to manually update routing tables in order to ac-
commodate new nodes and capabilities, of course. However,
when the number of such nodes increases, it becomes increas-
ingly vital to have a system that can adapt itself to network
dynamics without requiring a manual intervention. ASCoT
can adapt itself to use new resources available in a space net-
work and keep on functioning gracefully in a dynamic space
environment.

In this paper, we briefly describe ASCoT, a dynamic routing
system for science missions of tomorrow, which a) leverages
the predictability of satellite trajectories to effect position-
based routing in the space backbone, and b) departs from
traditional address-centric communication and uses a data-
centric architecture to enable energy efficient and low latency
operation in proximity networks.

On satellites providing backbone (interplanetary) communi-
cation links, ASCoT leverages predictable positioning and
dynamics of nodes in space to make routing decisions. Posi-
tional Link State Routing (PLS), an extension to the link state
routing used in the Internet, enables ASCoT to compute paths
using links that will be available even in the future. PLS is
unique relative to other link state protocols in two ways. Tra-
ditional link state protocols do not use positional information,
while PLS does. Furthermore, in PLS, link state information
can be proactively disseminated.

ASCoT also uses data-centric communication for proximity
routing such as satellites in a close formation or rovers and

1

sensors on a planetary surface. Such a communication mech-
anism allows declarative access to sensor data from proximity
networks. For example, a PI conducting an experiment is able
to issue a query of the form: ”Return an image from this re-
gion of Mars when the average temperature is greater than
25 degrees, and the light levels are below 10”. Data-centric
communication achieves energy-efficiency in two ways [16]:
a) Naming the data allows the system to eliminate different
levels of binding and b) Naming the data allows in-network
processing of data. Intermediate nodes now have the context
to transform the data in several interesting ways: for example
to aggregate different data items that perhaps have redundant
information (e.g. temperature data from nearby sensors), or
reduce information in response to resource constraints (e.g.
downsample an image because the image size exceeds avail-
able network capacity).

We have implemented both of these mechanisms in the OP-
NET [3] simulator and integrated our simulator with an
STK [4] front end. We have also implemented a query
front end which supports multiple, simultaneous one-shot and
streaming queries. This provides concurrent and constant
access to space assets to the scientists and the mission con-
trollers. An evaluation of PLS using our simulator shows that
even with a limited knowledge of future link schedules, PLS
can compute the best paths that maximize a given metric.

2. RELATED WORK

Recently there has been an increasing interest in communica-
tion infrastructure for the space Internet. We are not aware of
any work that addresses route dissemination, path computa-
tion, and integrating data centric architecture for the science
missions. Following are the major categories of work related
to our effort.

Routing in Space

A number of studies [9], [7], [12], [14] propose exploiting
the geometry of orbits to compute the next hop towards the
destination. These schemes assume that the information rel-
evant to path computation (topologies and orbits and num-
ber of satellites) are well-known and programmed into the
satellites ahead of time. Given this information, custom algo-
rithms that exploit geometry can be used to compute the paths
to the destination at any given time. These studies are limited
to various Earth orbits (LEO, MEO, GEO).

MARVIN [29] is a routing protocol for the interplanetary net-
work and leverages predictability of the orbits to compute
paths. MARVIN uses an augmented Dijkstra’s algorithm to
compute the shortest path according to a given metric. How-
ever, they use published ephemeris tables and only address
path computation and the algorithm can not rapidly adapt to
expected as well as unexpected changes. They propose com-
puting the paths in a centralized node and disseminating the
routing table to the nodes. We believe this will not scale to
the large number of satellite nodes we envision in the future.

TCP/IP and UDP in Space Networks

There is an overwhelming desire to make any system and pro-
tocol co-exist with the IP [24] stack to maintain backward
compatibility in the existing infrastructure. However, the case
for using TCP [25], the de-facto transport protocol in the In-
ternet, in the space network is not strong. TCP uses end-to-
end control mechanisms to probe and adjust to network dy-
namics. The performance is drastically reduced when the la-
tencies are high, because end-to-end control mechanisms tend
to misinterpret latency as a sign of congestion. A number of
studies [11], [19], [6] review the impact of high bandwidth-
delay product on TCP and conclude that TCP is ill-suited for
space like environments where delay will be minutes if not
hours. There has been a number of proposals on how to mod-
ify TCP to adapt it to the space environment [10]. UDP [23]
which does not use end-to-end control might be more applica-
ble in space if one insists on using the conventional network-
ing stack. UDP does hop-by-hop forwarding with no end-
to-end guarantees of reliability. ASCoT messages resemble
UDP in the sense that hop-by-hop interaction is used to affect
end-to-end QoS requirements.

Delay Tolerant Networking

Delay Tolerant Networks (DTN) are characterized by high la-
tency, low data rate, frequent link disconnections, and lack of
end-to-end path at a given time [13]. The space internet can
be thought of as an instantiation of DTN. In the DTN archi-
tecture, nodes that are within the same region use the native
protocol optimized for that environment. Nodes in different
regions communicate to each other using the Bundling proto-
col [28] through DTN gateways. DTN uses a store and for-
ward paradigm in which bundles might be sometimes stored
for a long period of time and forwarded to the next hop to-
wards the destination when the link becomes available. A re-
cent work establishes a taxonomy of different routing proto-
cols that one might use in the context of DTN [17]. Our study
could be viewed as fleshing out some aspects of the DTN ar-
chitecture: the actual routing protocol used in the space back-
bone, and the networking stack used in proximity networks.

Terrestrial Sensor Networking

Much effort in sensor networking is directed towards collect-
ing environmental data using nodes with low computation,
communication, and energy resources. The wireless links
often are of poor quality and intermittent. Data centric ar-
chitectures (Directed Diffusion [16], One Phase Pull [15],
GHT [26]) have been proposed and studied extensively in
these networks. Directed Diffusion uses data centric nam-
ing that eliminates different levels of binding and enables in-
network processing of data. These techniques can be adapted
to science space missions which are also characterized by
nodes with low computation, communication, and energy re-
sources. We propose using protocols such as One Phase Pull
(a routing protocol under the Diffusion framework) for rout-
ing in the proximity network consisting of a constellation of
spacecraft or a group of rovers on the surface of a planet.

2

For commanding and querying the vehicles, we propose us-
ing data centric rather than node centric naming and commu-
nication.

While ASCoT borrows the idea of data-centric routing from
sensor networks, ASCoT’s data-centric routing schemes are
likely to be significantly different from those used in sensor
networks today. They will be more tightly integrated with
position-based routing, will explicitly deal with the signifi-
cant amount of heterogeneity that exists in space networks (in
terms of link bandwidth and node processing capability), and
will attempt to leverage some of the predictability of space
configurations (e.g. known satellite trajectories) to intelli-
gently route information.

3. WHY NOT INTERNET ROUTING?

In this section, we first list the unique challenges in space
communication before describing why the standard routing
algorithm used in the Internet is not directly applicable in the
context of space networks.

Link Characteristics in Space Networks

High latency— EM radiation travels in space at the speed of
light. This results in communication between Earth and satel-
lites in LEO/MEO taking a few hundred milliseconds, be-
tween Earth and Mars taking several minutes, and between
Earth and deep space probes taking a few hours to a few days.

Low throughput— While terrestrial networks boast rates ex-
ceeding GBps, satellites communication bandwidth is rarely
over a few MBps. Usually the farther away the satellite, the
smaller the bandwidth available due to errors that can be at-
tributed to lower signal to noise ratio, effectively ruling out
expensive routing algorithms with too much overhead.

Short link duration— Satellite nodes are expected to be visi-
ble for a few hours or less depending on the orbit before they
get occluded by planets. This is in contrast to wired networks
in which nodes are reachable for a few weeks without any
interruption. One can use redundancy to effectively increase
the duration of link. DSN [2] base stations, for example, use
this technique to increase visibility between Earth and distant
objects. More generally, however, for deep space communi-
cation, limited but largely predictable link durations will be
the norm rather than the exception.

Link asymmetry— Data rate usually is not the same on both
directions of a link. Satellites are usually provisioned for sig-
nificantly higher data rates downstream. Future tasking nodes
might have opposite characteristics. Currently, most of the
traffic between Mars/Earth is earthbound with ratio as high
as 1000 to 1 [11]. Routing protocols that use a forward di-
rection route update to establish reverse routes without taking
data rates into account are bound to perform badly.

Link dynamics and outages— Wireless links in space come
with the benefit of some predictability but also demonstrate
significant unpredictability. Satellites and planets follow or-
bits that can be computed and predicted to a reasonable ac-
curacy. This makes certain links periodic. The Mars rover,
for example, communicates with Earth only when it is fac-
ing the Earth. The connectivity follows the cycle of day and
night on Mars. Many satellites in deep space missions are fre-
quently occluded by planets, moons, and asteroids but these
occlusions can be computed ahead of time. This allows us to
predict the availability of links to these satellites. However,
there can be unexpected link outages caused by terrestrial el-
ements [1] or solar flares [5]. These unexpected outages can
last several hours to several days.

Point-to-point communication— Long distance communica-
tion is almost always point-to-point; omni-directional an-
tenna is rarely used. Due to the use of high-gain antennas
for regular communication, the reception drops off rapidly as
one moves from the cone of signal propagation. Satellites
steer (passively or actively, mechanically or electronically)
their antenna to point to the node for communication.

High Error rates— Interference in space and in the atmo-
sphere will significantly degrade the reliability of links over
terrestrial counterparts even with error correction. By trading
data rate for error correction, space links can achieve BER
rates of ������� to ������� compared to fiber optic error rates of	 ��� ��

� . To-earth frame error rates of ��� ��� to ��� ��� can be
expected, and weather conditions cause 5% of frames trans-
mitted to be lost. Standard assumptions that packet loss is
caused entirely by buffer overruns no longer hold.

Routing in the Internet and MANETs

Routing mechanisms used in the Internet are well understood
and highly scalable. BGP [27] is the de-facto standard in
inter-domain routing in the Internet. OSPF [21] is used for
intra-domain routing. A combination of these two mecha-
nisms have enabled highly reliable and scalable routing in the
Internet.

Mobile ad-hoc wireless networks work reasonably well under
a high degree of dynamics. Recent widespread adoption of
802.11 wireless networks illustrates that the mechanisms for
wireless network operation are stable and reliable to the point
that it is starting to challenge the wired infrastructure. In this
environment, nodes are constantly moving from one place to
another but they are still able to probe for available services
wherever they happen to be, associate with a node that is able
to provide the best service, and use that node as long as it
is available. The capability to detect new services as well as
failed services is critical to being able to adapt to the changing
environment.

The wireless ad hoc solution for campus-wide scale is not ap-
plicable in the space. The wireless part of these networks is
usually a single hop network while ASCoT needs to use mul-

3

tiple hops to reach a destination. While there are MANET [8]
standards for multiple-hop wireless networks, they are rarely
used in practice and have hardly been tested in real world
application. Multiple hop wireless networking is a hot topic
and several protocols for route discovery have been proposed.
AODV [22] and DSR [18] are probably the most well studied
proposals. A recent study on an ad hoc vehicular network [20]
shows that these protocols perform poorly under high mobil-
ity. These protocols are a class of protocols called reactive
protocols. They probe the network to find paths to different
destinations when asked to route packets. However, due to
high mobility, the paths become outdated quickly.

MANET routing protocols (AODV and DSR) assume a
broadcast media. In AODV, for example, routes for data for-
warding are formed along the propagation path of the query
(Route Request messages). This algorithm finds reasonable
paths only if the links are symmetric. Both MANET routing
protocols and BGP/OSPF do not have mechanism to use peri-
odicity of the links to compute paths. They use only the active
links to compute a path. In space networks, often all the links
on a path are not active at a given time and messages need to
be buffered for long periods of time, in the order of minutes
and hours, as opposed to buffering in the Internet in the or-
der of milliseconds. Thus, even though solutions deployed in
MANET’s and the Internet are known to be highly stable and
scalable, they can not be directly used in the context of space
networks.

Host-centric Architecture

The Internet uses a host-centric architecture to relay messages
from a source to the destination. The source and destination
nodes are identified using unique names and addresses. The
intermediate nodes know how to relay messages towards a
given address. When a source intends to send a message to a
destination, it sends a request to a server (commonly a DNS
server) to provide the IP address for the given name. This
process is called name resolution. Once the name is resolved,
i.e., the IP address is known, the source sends the message
to the destination IP address. While resolving names using a
DNS server might not be a problem for Earth to Space com-
munication, it will be costly in energy as well as latency for
Earth-bound messages that originate on Mars assuming such
DNS servers will be deployed on Earth. For a rover on Mars
to resolve names using a DNS server can take minutes of
communication overhead. An alternative is to use explicit IP
addresses and use hard-coded sources and destination identi-
fiers in all the layers of the protocol stack. However, this re-
sults in a highly inflexible configuration. Furthermore, when
a PI asks a query such as “What is the average temperature of
the shadowed parts in Gusev crater?”, a host-centric approach
first collects the IP addresses of all the sensors and rovers in
the crater (a process similar to name resolution) then sends
query to each of the node in the crater. This multiple lookup
and binding seems highly inefficient.

It has been shown that when network communication is data-

centric (e.g. when a message specifies its content in terms
of attributes; thus a message from a node in a proximity net-
work might contain attributes such as “location”, “tempera-
ture”), energy-efficiency is obtained in two ways: a) Nam-
ing the data allows the system to eliminate different levels of
binding and b) Naming the data allows in-network processing
of data. The query for the average temperature of the shad-
owed parts in Gusev crater, for example, now can be flooded
in the proximity network and only the nodes that meet the
query criteria (in Gusev crater and in shadowed parts) will re-
spond to the query thereby avoiding multiple steps of binding
and spending energy transmitting data from nodes that are
not in the shadowed parts of the crater. Intermediate nodes
also have the context to transform the data in several interest-
ing ways: for example to aggregate different data items that
perhaps have redundant information (e.g. temperature data
from nearby sensors), or reduce information in response to
resource constraints (e.g. downsample an image because the
image size exceeds available network capacity). In this way,
space systems will be able to reduce the latency of communi-
cation compared to a purely IP based approach. Furthermore,
using these ideas, space networks can perform hop-by-hop
error recovery because the data is self-identifying.

In this section, we surveyed different networking technolo-
gies that have been deployed in the Internet and explained
how they can not be directly applied in the space internet.
There is an overwhelming desire to make any new deploy-
ments compatible with the current infrastructure and host-
centric architecture. However, we believe that the science
missions can benefit greatly from data-centric approach ad-
vocated by the ASCoT architecture.

4. ASCOT ARCHITECTURE

ASCoT is a routing and scheduling substrate for flexible task-
ing and coordination among space assets. Unlike existing so-
lutions for terrestrial routing, ASCoT is specifically designed
to surmount challenges unique to the space domain and of-
fers an asynchronous API for flexible tasking and coordina-
tion that can adapt to the dynamics of the environment. More
specifically, it addresses the following requirements:

� Scaling to several hundred nodes including orbiting con-
stellations, rovers, static sensor pods etc.

� The ability to deal with message propagation latencies in
the order of tens of minutes to hours.

� Connectivity changes due to physical events, such as plan-
etary occlusions or solar flares.

� Heterogeneous and asymmetric link bandwidths, as well as
widely varying link error characteristics, resulting in the need
for Quality of Service (QoS).

� The ability to name data in order to make it self-identifying.

ASCoT expects the underlying system to provide a variety
of information and services to the ASCoT middleware. This
includes:

4

� Navigation information – characteristics of the links avail-
able and nodes on the other end, including position (current
and expected), bandwidth, reliability, latency, etc.

� Current position of the node
� Local status (power, health, load of transmission queues,
etc.)

� Ability to send and receive messages, with the underlying
layers handling all framing and encoding procedures.

Applications interface with the ASCoT middleware using the
Diffusion API: interest and data messages, filters, and their
corresponding callback functions. When a PI issues a query
to the system, the query is translated into an interest message
and handed to the ASCoT middleware. Whenever there is
data available that matches the query, data is forwarded to
the callback function. The applications on rovers and sensor
nodes indicate the types of queries they are interested in by
installing filters with a set of attributes. Arrival of matching
queries is announced to the application using a callback for
the filter. Without filters, the default behavior is to receive all
interest messages. A node can then decide queries to which
it will and can respond. Sensor nodes and rovers respond to
queries using data messages. The ASCoT layer ensures that
there exists an interest for that type of data before forwarding
it towards the querying node.

ASCoT uses a protocol called Positional Link-trajectory State
(PLS) routing to compute paths to the destination nodes. PLS
is an adaptation of Link State Routing (LSR) to the context
of space networks. The basic idea behind our proposed ap-
proach is that link trajectories, together with link attributes
such as latency, data rate and error characteristics are dissem-
inated throughout the network. Using this information, each
node can then independently compute a path to a given loca-
tion by computing a shortest path tree (using a modified Di-
jkstra’s algorithm) spanning the network. The next hop for a
message is then determined by looking up the next edge lead-
ing to the destination in this spanning tree. As long as change
in neighborhood information is infrequent, and the total num-
ber of nodes (and links) participating in link state routing is
small, the protocol is known to work efficiently. The path
computation can also take into account link characteristics in
order to satisfy any Quality of Service requirements that a
particular message (or conversation) might have.

PLS departs from traditional link-state routing in one very im-
portant way. In PLS, the information disseminated through-
out the network is the trajectory of nodes in space, and the
availability, of the link endpoints. We intend PLS to be run
only on mobile space assets. A mobile space asset is a satel-
lite or a base station on planets that are moving large distances
with respect to potential communicating partners. We have a
qualitative definition of “large distance”. We consider base
stations on Earth, and the satellites around Earth and Mars
as mobile space assets. By our definition, then, a Mars rover
would prefer to relay all its messages through a powerful base
station on Mars, so a Mars rover would not participate in PLS

routing. On the surface of Mars, sensor and rover networks
will use Diffusion [16] based data-centric routing. Diffusion
provides naming and aggregation framework for data gener-
ating ad hoc networks such as sensor networks. Diffusion can
use different routing protocols such as One Phase Pull, Two
Phase Pull, and Push. Combination of naming, framework
for aggregation, and data-centric routing protocol makes this
light-weight substrate well-suited for proximity networks. On
Earth, one would just use IP based routing to exchanges mes-
sages with the base stations such as DSN base stations.

To adapt LSR to the unique demands and constraints of
the space internet, we propose that nodes participating in
PLS routing exchange the following set of information
about each link that they can form with their neighbors:�����������
	��
���
���
������������������������� ��	��

. Here
�

is the sender,� ���!	
is some description of its position,

�
a node with which it

can communicate,
�
, expressed as a list of

�
start,stop

�
tuples

is a set of time intervals (also mentioned as contacts in [17])
in which the link

���"�#��	
is available. $ �����������%�����&���'�(��	

are a set of metrics that capture link quality information, such
as bandwidth, latency, error rate etc. This information is
flooded reliably throughout the network, and is used by nodes
to compute paths. The nodes exchange this information ev-
ery few hours to a few days. The frequency of update must
be kept high enough so that link updates are communicated in
due time but low enough to ensure conservation of network-
ing and energy resources and to prevent accumulations of
large numbers of these updates. Once link information about
neighbors is available, the nodes compute the “best metric”
trees for each QoS metric.. Examples include computing the
least latency or most bandwidth paths two nodes. The algo-
rithm uses the time intervals of link availability to predict and
ensure links are available when a packet reaches those links
on its way to its destination.

How does PLS address the constraints of space enumerated
in Section 3? While space links have high latency and space
assets are continuously mobile, PLS takes advantage of their
relative predictability by distributing information about link
availability throughout the network ahead of time. Thus, even
with long delays, the information about link availability is
known to PLS nodes when needed (PLS deals with unex-
pected link failures as well, in a manner described in the next
section). Furthermore, information about link data rate asym-
metry and link quality are distributed in PLS, so nodes can
make intelligent routing decisions.

Now we describe the three key components of ASCoT rout-
ing: (1) dissemination of link information, (2) computing the
paths (routing tables) on interplanetary links and (3) forward-
ing messages on the interplanetary links using the routing and
using gradients in the proximity networks. The base station
bridges the interplanetary network with the proximity net-
works using message translation.

5

v.receive_linkstate (links)
for all l in links

if exists(known_links, l.(u->v))
known_links[u->v] = l

else
known_links.add(l)

v.link_refresh()
for all l in known_links
if (l.age > LINK_TIMEOUT)

l.delete()
l.age++

send(known_links)

Table 1. PLS link information dissemination algorithm

Link information dissemination

PLS leverages the largely predictable trajectories of space as-
sets and distributes the link information before the links be-
come available (this is not the case with mobile ad hoc net-
works). When a link comes up, nodes at each end of the
link exchange their link state information; in this manner,
whenever nodes could have used a link for communication,
they have the necessary information to compute paths. Ini-
tial knowledge of the link’s existence is obtained either from
a lower stack layer or through previously known links during
link state dissemination. Over a period of time, nodes accu-
mulate enough link state information to compute the shortest
paths to each node in the network. Table 4 shows a simplified
pseudocode that describes the dissemination algorithm.

PLS requires bi-directional links but asymmetric up/down
bandwidths do not pose a problem because bandwidth in each
direction is accounted for in the link state information and
taken into consideration while computing the paths.

Path computation

Traditionally link state protocols use Dijkstra’s shortest path
algorithm to compute a path to the destination. The algorithm
expects a set of links, link weights, and the root node as in-
puts. To compute the shortest path from the root node, all the
links are assigned a weight of 1. Thus, the algorithm com-
putes the shortest path (in terms of number of hops) to all the
destinations in the network. This algorithm assumes that all
the links are valid and active at all times. However, in space
networks many links are intermittent or periodic. In order to
use Dijkstra’s algorithm in this environment, we need to use
predicted link connectivity (part of link state entry for a link)
and make sure the link is valid when the packet arrives at the
link. In other words, we need to make the algorithm take into
account future topology schedules. Furthermore, observe that
different link attributes disseminated with PLS can be used to
compute paths with different QoS.

To achieve these goals, we need to make the following main
changes to Dijkstra’s algorithm. First, instead of hop-count,
minimize the desired QoS metric. Second, modify the algo-
rithm to account for time-varying graphs. The property that

our algorithm satisfies is that a path between two nodes never
uses, at any time

�
, a link that is not active at

�
. To ensure this

property, we modified Dijkstra’s algorithm so that it does not
add a link � to the shortest path tree if � is not valid between
times

�
� and

���
where

�
� is the time at which a packet would

arrive at the leaf of the tree before adding a new link and
���

is
the time at which a packet would arrive at the end of the tree
after adding a new link. Table 4 shows the pseudocode for the
augmented Dijkstra’s algorithm. This pseudocode uses sum
as the aggregation operator and latency as the link metric.
One can think of using different aggregation operators and
metrics with the same algorithm. For example, product ag-
gregation operator for link reliability, sum for energy metric,
min for maximum bandwidth, etc. Path computation builds
a routing table that lists each node that participated in PLS
message exchange and the next hop on a path that maximizes
a given metric. Table 4 shows a sample routing table.

At times, we would like packets to wait if better links are
going to be available in the future. This reminds us that rout-
ing decision is not simply building a routing tree; we need to
employ intelligent scheduling to meet the application’s QoS
requirement. At this stage, we remark that scheduling might
effect routing decisions, but we leave the design of the sched-
uler as future work.

Computational complexity is of concern in a routing protocol
because forwarding must happen using outdated paths while
new paths are being computed. CPU cycles are expensive
because of energy scarcity in space missions and the vari-
ety of maintenance, bookkeeping, and science tasks the CPU
must perform. Memory is equally precious. Of late, plane-
tary rovers, for instance, boast a few hundred megabytes of
memory. There is competition for memory usage from sci-
ence data, system data, communication buffers, and diagnos-
tic data. Asymptotic computational complexity of Dijkstra’s
algorithm is polynomial in the product of number of nodes
and edges in the network. The proposed modification to Di-
jkstra’s algorithm does not change its asymptotic complexity.
In the

��� � ��� procedure, for a given link, using � ����� �&� ��� � ��� � �
call, we iterate though all the available intervals. This adds
a multiplicative factor to the asymptotic complexity of the
overall algorithm. But we expect a small number of avail-
able intervals for a given link. Further, this list can be sorted
to minimize search time. If the number of nodes is large, it
might not be feasible to store the entire tree in the memory
in addition to the link state information. This is made all the
more difficult since the tree varies with the send time of the
packet. An alternative would be to retain link state informa-
tion but build the routing tree on-demand. This approach is
not suitable when there are frequent forwarding requests. In
a system that gets sparse forwarding requests, this might save
memory for other important tasks.

Message Forwarding using PLS

As mentioned in the previous section, the interplay between
routing and scheduling could become quite complex. The

6

// returns true if link l is available at time t
link_available(t, l)

for all i in known_links[l].intervals
if (t >= i.start) and (t < i.stop)

return true
return false

// compute the latency metric for a given link
latency_weight(u, v, arrival_time)

for all i in known_links[u->v].intervals
if i.start <= t && i.stop >= arrival_time

return link_latency(u,v,now());
if i.start >= t

return link_latency(u, v, i.start) +
(i.start - arrival_time);

// updates the tree if d[u] + (u,v) is shorter
// (according to a given metric) than d[v]
relax(u, v, metric_weight, agg_op)

newdv = agg_op(d[u], metric_weight)
if (d[v] > newdv) and

link_available(arrival_time[u], (u,v))
d[v] = newdv
pi[v] = u
arrival_time[v] = arrival_time[u]

+ latency_weight(u, v, arrival_time[u])

// initialize Dijkstra variables
initialize(G, s)

for each vertex v in V[G]
d[v] = inf
pi[v] = nil
arrival_time[v] = nil

d[s] = 0
arrival_time[s] = 0

// compute the best metric tree
// from source s in graph G
dijkstra(G, w, s)

initialize(G, s)
s = ���
q = V[G]
while (q != ���)
u = extract_min(q)
S = S union u
for each vertex v in adj[u]

relax(u, v,
latency_weight(u,v,arrival_time[u]), sum)

Table 2. Algorithm to compute PLS paths.

Metric: Latency

Destination Next hop Trajectory Path Metric
Mars base1 Earth relay2 t1 1400 ms
Mars base3 Earth relay2 t1 1402 ms

Metric: Bandwidth

Destination Next hop Trajectory Path Metric
Mars base1 Earth relay4 t3 600 Kbps
Mars relay2 Earth relay3 t4 400 Kbps

Table 3. Example routing table for a DSN node on Earth

find_next_hop(destination, metric)
entries = get_routing_entries(metric)
return closest_entry(entries, destination)

Table 4. Algorithm to find the next hop towards the
destination

current version of the ASCoT router instead performs a sim-
ple task: once routing table is populated for a given metric,
lookup the best next hop towards the destination and buffer
the packet until the link becomes available.

Most ASCoT queries have a geographic location or a region
as the target. When a message is sent from a workstation on
Earth to a region on Mars, the message is routed to the base
station on Mars using forwarding tables constructed by PLS.
The algorithm (Table 4) looks for a node that is geographi-
cally closest to the destination location.

Note that this is a greedy forwarding strategy with an assump-
tion that a node closest to the destination location will know
how to forward the message to the nodes in the destination.
The link updates close to Mars might not have already propa-
gated to nodes closer to Earth. In this case, the nodes closer to
Mars will have a more up-to-date information on which links
and proximity network can be used to forward messages to
the nodes in Gusev crater.

Not all the nodes in the network run PLS. Then, how can mes-
sages be forwarded to these sensors and rovers? The sensors
and rovers on the surface will be a part of a proximity net-
work (such as an 802.11 subnet); the node closest to destina-
tion might have the means to leverage the proximity network
to reach the destination. For example, the closest PLS node
to Gusev crater might be a Mars base station with two sets
of communication hardware to function as message gateway.
Thus, the router will forward the message to the base station
closest to the intended destination; the base station then will
use proximity network to reach the rovers and sensors.

Message switching

The base station in a proximity network acts as a message
gateway. It decodes the data-centric name for the target, en-
codes it as an attribute along with other constraints for the
query, and uses Diffusion to harvest data. The node, using
Diffusion semantics, translates a query into an interest mes-
sage, floods the network and sets up gradients in the network
using the One Phase Pull [15] protocol. Sources, when they
generate data, inject messages into the network as a set of
attribute-value tuples. Gradients guide data to the base station
by matching attributes in the data message to that of the gradi-
ents established by the interest messages. Data not matching
the gradients are dropped at the first hop. Data filtering and
aggregation happen in the network, close to the site where
data is generated, rather than transporting them to Earth only
to find out most of the data needs to be filtered out.

7

Figure 1. ASCoT Implementation in OPNET.

Figure 2. ASCoT Router state diagram showing major
functionalities.

5. IMPLEMENTATION STRUCTURE

We implemented ASCoT in OPNET. There are three basic
services PLS must perform: (a) Dissemination of link state
information, (b) Path computation and (c) Message forward-
ing. Here we will describe the overall ASCoT implementa-
tion and explain where and how these functionalities are im-
plemented.

An ASCoT node consists of the following processes:
ascot app, ascot router, ascot nav, position manager, as-
cot diff core, ascot mac and a set of OPNET built-in pro-
cesses: udp, ip encap, ip, arp, and transmitter and receiver
antenna modules. Figure 1 is a screenshot from OPNET
node model view that shows how these processes are inter-
connected. The screenshot shows a node model with two sets
of antenna. In our scenario, a base station on Mars is a node

Figure 3. ASCoT Query Interface.

of this type. The base station communicates with satellites
using one set of antenna and uses the second set to commu-
nicate with sensors and rovers on Mars on a different carrier
frequency. Satellite and relay nodes have a single set of an-
tenna.

The ASCoT application is implemented in the ascot app pro-
cess model, which behaves differently depending on the type
of node. Nodes that send out queries are called sink nodes and
the nodes that send out sensor data are called source nodes.
On a sink node, ascot app process is responsible for generat-
ing interests and receiving data matching that interest. On a
source node, this process receives interests and sends out data
matching the interest. Ascot app allows an external interface
for injecting queries and receiving data as well. We have im-
plemented this using a webpage based query injection and
data display (Figure 3).

Most of the intelligence of routing is built in the ascot router

8

process. There is a flag that determines the type of routing
to enable. The current version of ascot router supports three
types of routing: (1) gradient-based One-Phase-Pull, (2) ge-
ographic greedy routing, and (3) PLS routing. This provides
the ascot subscribe (used for sending a query to the network)
and ascot send (used for sending data in response to a query)
interfaces to the ascot app. Figure 2 shows the state machine
of the router.

The router initiates link information dissemination every time
PLS clock expires. When a PLS hello message is sent out, a
chain of PLS update messages are triggered which results in
nodes discovering all the links in the network. Before an in-
terest or data message is sent out, link availability information
is used to buffer that message until the link becomes avail-
able. A periodic buffer clock triggers a message transmission
if links are available for buffered messages. Packets received
from diff core get forwarded to the application or sent back
down to be forwarded to other nodes.

Path calculation is implemented as an external function to
which router passes in the list of all known links. The cal-
culate path function then creates a graph, runs the shortest
path algorithm with a given metric and returns the next hop
on a path to the node closest to the destination.

Diff core provides a layer for future scheduling additions to
ASCoT. Currently diff core acts as a pass through layer. Po-
sition manager manages object positions using position vec-
tor generated by STK. Ascot nav sends alerts to ascot router
whenever a new neighbor is discovered or an existing neigh-
bor is no longer responding to beacons.

The node model uses a standard IP-based stack just as a one-
hop connection service. One could substitute any connection
service depending on the platform. All the routing intelli-
gence is built in the ascot router and IP is used to deliver a
message to the next hop that ascot router has determined to
be on the best path to the destination. The current simulator
uses IP-based connection service because we wanted to run
ASCoT in a scenario as close as possible to the reality. Satel-
lites will have standard IP-stack on them and it is desirable to
build a service that is compatible with existing services.

We had to build our own Media Access Control (MAC) layer
because OPNET does not have a MAC layer model that can
handle large latency interplanetary links without heavy mod-
ification. Because of assumptions on maximum latency, the
default MAC often behaved unpredictably when it was asked
to deliver a packet on a link with latency in the order of thou-
sand seconds The chatty nature of the standard MAC pro-
tocol was also entirely inappropriate. The MAC we wrote
provides a very basic delivery mechanism and works for any
range of latencies and any number of transmitters/receivers.
While this MAC would be insufficient for a general purpose
use, it is adequate as a basic delivery mechanism.

Low level link negotiation, such as antenna pointing and link
characterization is not modeled (the required data is taken
from STK). Trajectory and link availability calculations are
also taken from STK and are provided to the OPNET code
through the navigation module which simulates a run-time
environment. All coordinate translation is currently per-
formed in STK (OPNET operates solely in an Earth-centered
fixed coordinate system). In a real implementation, these cal-
culations would be performed by the onboard computer.

While we place ASCoT on top of UDP and IP, this is done
primarily for compatibility with other likely space assets.
The framing, addressing and error checking services that
these modules provide could be easily achieved through other
means.

Demo Scenario

The scenario with which we demonstrate our current rout-
ing capabilities envisions a PI requesting data directly from a
rover on Mars. Through a web interface, the user selects the
type of data desired and the application software running on
his workstation sends the request to Mars. In the simulation,
the originating point of the request is the Madrid DSN station:
we do not model the communication between the DSN node
and the PI. We assume that communication will be handled
through standard internet channels. If the DSN station does
not have direct visibility of Mars at the time, the request is
relayed through one or more Earth satellites, then through a
Mars orbiter (if necessary) before it reaches the base station
on Mars. The base station serves as a gateway for the two
rovers in its vicinity (Spirit and Opportunity) that will pro-
vide the data. The topology of this scenario vaguely resem-
bles current Mars rover communication scenarios, but with
more intermediate nodes than currently in use to demonstrate
the power of PLS routing. For example, instead of choosing
the DSN dish that has Mars in view (which may be busy with
other tasks) all requests are sent from Madrid, requiring the
use of Earth relays.

Demonstrated ASCoT Features

This scenario highlights four strengths of ASCoT.

1. Its ability to deal with heterogeneous hardware. The Earth
and Mars relay satellites, as well as the Mars base station,
may utilize completely different transmission hardware. As
long as they have a form of the IP stack and ASCoT running
on top, the communication occurs seamlessly.
2. The reliability of the protocol in the face of dynamic net-
work topology, short link duration and long link latencies.
As relay stations become occluded or occupied with tasks
of higher priority (or orientation requirements force them to
cut the current link), ASCoT automatically selects a different
path that uses orbiters that become available.
3. PLS routing exploits future link information to predic-
tively route on paths that become available just as the mes-
sage travels along, and buffers messages as it waits for the

9

Figure 4. Earth View of the network. Data is streaming
from Mars, and is being routed through EarthRelay111. The
thickness of the line indicates approximately the amount of

bandwidth being used.

links to come up if necessary.
4. Automatic and efficient path discovery and link informa-
tion distribution that allows PLS path computation to occur.
Several parameters allow this behavior to be tuned to the cur-
rent network state.

Simulation Components

We now describe various simulation components in our
demonstration scenario.

PI— The PI specifies the source and constraints of the data
using a web interface. In the demo, six types of data
are available: a mini-Thermal Emission Spectrometer (im-
age), Panoramic camera (image), microscopic imager (im-
age), light, sound, and temperature. The simulation manager
accepts the data from the web page and passes it to the appli-
cation process inside the OPNET simulation.

DSN— The Madrid DSN node participates in PLS and uses
it to select the best path to the selected destination. If Mars
is not visible at the time of the query, the node will attempt
to route through an Earth satellite. If none of those are cur-
rently visible (but are anticipated) it will buffer the interest
and send it out at a later time. We used a carrier frequency of
7.5GHz and a downlink and uplink bandwidths of 0.2 Mb/s
and 10Kb/s respectively on these links.

Earth Orbiters—Six satellites in the MEO orbit can relay the
signal to and from the vicinity of Mars. There are times when
none of these satellites are in view, and the DSN station must
buffer the interest. The antenna characteristics for both Earth
satellites and the DSN station are chosen such that they can
transmit to any Mars satellite that is in line of sight. Figure 4
shows the earth view of satellites and the DSN station while
data is coming from Mars.

 0

 500

 1000

 1500

 2000

 2500

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
at

h
La

te
nc

y
(s

ec
on

d)

Lookup/send time (hour)

Optimal Path
PLS path

Figure 6. Path latencies. Planetary and satellite positions at
lookup time impact path latency.

Mars Orbiters—Three satellites in Areosynchronous and five
satellites in moderately inclined lower Mars orbit are avail-
able for relaying the packets to and from the base station that
is near the two data collection rovers. This redundant (and
not very realistic) set up was chosen to allow the possibility
of more complicated paths.

Mars Base station—All communication with the rovers hap-
pens through the base station. It has two sets of network in-
terfaces: one to talk to the Mars orbiters using 7.5 GHz fre-
quency and another to communication with the surface rovers
using the 802.11 radio. By going through a dedicated base
station, the rovers can ensure continuous accessibility and
further reduce their communication power requirements.

Surface Rovers— The scenario is set up such that the two
rovers (Spirit and Opportunity) can talk only to the base sta-
tion, but those links are available continuously. Upon re-
ceiving a query from the PI, the rovers start transmitting the
data. Filters registered in the diffusion core ensure that only
matching data is sent as a response. Figure 5 shows the Mars
view with rovers and orbiters when messages are being sent
to Earth.

6. SIMULATION EXPERIMENTS

In this section, we compare the quality of the best possible
route an engineer can manually program on to a node with
the path automatically discovered by PLS. Existing routing
solutions require manual configuration. Network designers
compute ahead of time when links will be available and con-
figure each node manually to receive or transmit messages at
those times. PLS on the other hand automates this process.
It automatically discovers the link schedules and propagates
them. It also communicates to other nodes any unexpected
changes in link schedules. This automated system relies on
messages exchange with other nodes over lossy links orches-
trated with an asynchronous protocol. We predict that PLS

10

Figure 5. The Mars View of a data transmission. Data is sent from Spirit through Opportunity, the base station, and
Satellite112. This illustrates a path that does not involve buffering at any intermediate points, and the latency of which is

effectively the propagation delay between Earth and Mars (1250s at the date simulated). An interest that has been buffered on
MarsRelay5 is now also being transmitted to the base station.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 5000 6000 7000 8000 9000 10000

P
er

ce
nt

 lo
ok

up
 fa

ilu
re

s

PLS Lookahead window (second)

Figure 7. Lookup failures with different lookahead
windows.

will find a path almost as good as the best path even with this
incomplete information.

For our comparison study, we define PLS path to be the
path discovered by PLS. We define Optimal path to be the
best path considering complete information about future link
availability. PLS uses a limited lookahead of link schedules to
compose a PLS path update message. This limited lookahead
simulates the finite knowledge of future information that is
achievable. Furthermore, due to collisions and errors, some
PLS messages will be dropped. Optimal path computation
uses the entire link schedules generated by STK to compute
a path.

We were able to demonstrate that a limited lookahead of 7000
seconds is enough for PLS to be able to compute the path

 0

 1

 2

 3

 4

 5

 6

 7

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
at

h
le

ng
th

 (
ho

ps
)

Lookup/send time (hour)

Figure 8. Path lengths (number of hops) on a path selected
by PLS with a lookahead window of 7000 seconds

from sink on Earth to a rover on Mars at all times (Figure
7). Furthermore, whenever PLS discovers a path, the path
is always the least latency path (Figure 6). We verified this
by comparing the PLS path with the Optimal path for each
lookup. The intuition is that to compute the least latency path
we need not look too far into the future because a path that
uses link that is available far into the future, instead of links
available in the near future, can not form the least latency
path. Thus, optimal path computation never uses link sched-
ules for distant future, rather it forms a path using the links
that are available in the near future. In reality some path up-
date messages might get dropped which will result in PLS
computing suboptimal paths.

Even with a few relay satellites, PLS was able to compute
paths with latencies close to the straight-line propagation de-

11

lay between the sink and the target rover. Due to planetary
and satellite dynamics, sometimes the links between Mars
and Earth relay satellites can get occluded. The peaks in
the graph is due to occlusion which forces PLS to queue
the packet before it can be forwarded to the next hop. PLS
was able to automatically find the satellites relays to form a
path that provided a near optimal latency performance. These
peaks are artifact of the scenario rather than PLS. We also
found that paths as long as seven hops were being used to
deliver the interest messages (Figure 8).

7. CONCLUSIONS AND FUTURE WORK

ASCoT is a new data-centric and position-based routing ar-
chitecture for future space science missions. These missions
involve an increasingly large number of satellites which ren-
der the current manual and static routing practice ineffective
because those techniques do not scale with the number of
nodes. ASCoT dynamically discovers and computes the best
paths to the destinations that are identified by locations rather
than nodes. ASCoT departs from traditional address-centric
communication and uses a data-centric architecture to enable
energy efficient and low latency operation.

We have hinted that routing and scheduling might interact in
complex ways. As we design scheduling and resource allo-
cation strategies, we will continue to study those interactions.
Further, we intend to do more simulation experiments with
more scenarios with more planets and satellites. We also plan
to study the routing state and route stability to evaluate the
PLS paths.

Our study shows that even with a limited knowledge about
the future, a dynamic approach such as ASCoT can discover
paths that can be used to forward messages successfully and
efficiently. Our first exploration of integrating link state style
routing with data-centric routing looks promising.

8. ACKNOWLEDGEMENTS

This work is supported in part by the National Aeronautics
and Space Administration (NASA) through the NASA Space
Communications Project (NAS3-03089). Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of NASA.

REFERENCES

[1] Australian storm delays mars rover’s work, cnews.
http://cnews.canoe.ca/CNEWS/Space/
2004/01/21/320180-ap.html.

[2] Deep Space Network. http://deepspace.jpl.
nasa.gov/dsn/.

[3] OPNET Modeler, OPNET Technologies, Inc. http:
//www.opnet.com/.

[4] Satellite Took Kit, Analytical Graphics, Inc. http:
//www.stk.com.

[5] Solar flare hobbles japanese communications satel-
lite. http://www.space.com/news/kodama_
down_031029.html.

[6] Ozgur B. Akan, Jian Fang, and Ian F. Akyildiz. Perfor-
mance of TCP protocols in deep space communication
networks. IEEE Communications Letters, vol. 6, no. 11,
pages 478 – 480, November 2002.

[7] Ian F. Akyildiz, Eylem Ekici, and Michael D. Bender.
MLSR: A Novel Routing Algorithm for Multilayered
Satellite IP Networks. IEEE/ACM Transactions on net-
working, Vol. 10, No. 3, June 2002.

[8] S. Corson and J. Macker. RFC 2501: Mobile Ad Hoc
Networking (MANET): Routing Protocol Performance
Issues and Evaluation Considerations, January 1999.

[9] M. De Sanctis, E. Cianca, and M. Ruggieri. IP-based
routing algorithms for LEO satellite networks in near-
polar orbits. In IEEE Aerospace Conference, 2003.

[10] R. Durst, G. Miller, and E. Travis. TCP Extensions for
Space Communications. Proceedings of the second an-
nual international conference on Mobile computing and
networking, White Plains, NY USA, page 15, 1996.

[11] Robert C. Durst, Patrick D. Feighery, and Keith L. Scott.
Why not use the Standard Internet Suite for the In-
terplanetary Internet? Interplanetary Internet Study
Seminar, California Institute of Technology, 25 Octo-
ber 1999, http://www.ipnsig.org/reports/
TCP_IP.pdf.

[12] Eylem Ekici, Ian F. Akyildiz, and Michael D. Bender. A
distributed routing algorithm for datagram traffic in leo
satelitte networks. IEEE/ACM Trans. Netw., 9(2):137–
147, 2001.

[13] Kevin Fall. A delay-tolerant network architecture for
challenged internets. In Proceedings of the 2003 confer-
ence on Applications, technologies, architectures, and
protocols for computer communications, pages 27–34.
ACM Press, 2003.

[14] H. Chang and B. Kim and C. Lee and Y. Choi and S.
Min and H. Yang and C. Kim. Topological Design and
Routing for Low-Earth Orbit Satellite Networks. In Pro-
ceedings of IEEE GLOBECOM, pages 529–535. IEEE,
1995.

[15] John Heidemann, Fabio Silva, and Deborah Estrin.
Matching Data Dissemination Algorithms to Appli-
cation Requirements. Technical Report ISI-TR-571,
USC/Information Sciences Institute, April 2003.

[16] John Heidemann, Fabio Silva, Chalermek Intanagonwi-
wat, Ramesh Govindan, Deborah Estrin, and Deepak
Ganesan. Building efficient wireless sensor networks
with low-level naming. In Proceedings of the Sympo-
sium on Operating Systems Principles, pages 146–159,
Chateau Lake Louise, Banff, Alberta, Canada, October

12

2001. ACM.

[17] S. Jain, K. Fall, and R. Patra. Routing in a Delay Toler-
ant Networking. In Proceedings of the ACM SIGCOMM
Conference, Portland, USA, August / September 2004.
ACM.

[18] David B Johnson and David A Maltz. Dynamic source
routing in ad hoc wireless networks. In Imielinski and
Korth, editors, Mobile Computing, volume 353. Kluwer
Academic Publishers, 1996.

[19] T. Lakshman and U. Madhow. The performance of
TCP/IP for networks with high bandwidth-delay prod-
ucts and random loss. IEEE/ACM Transactions on Net-
working, vol. 5 no 3, pages 336 – 350, July 1997.

[20] Christian Lochert, Hannes Hartenstein, Jing Tian, Hol-
ger F, Dagmar Hermann, and Martin Mauve. A routing
strategy for vehicular ad hoc networks in city environ-
ments. In Proceedings of the IEEE Intelligent Vehicles
Symposium 2003, June.

[21] J. Moy. RFC 2328: OSPF Version 2, April 1998.

[22] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-
demand distance vector routing. In Proceedings of the
2nd IEEE Workshop on Mobile Computing Systems and
Applications, pages 90–100, New Orleans, LA, USA,
February 1999.

[23] J. Postel. User Datagram Protocol. Network Information
Center RFC 768, August 1980.

[24] J. Postel. Internet Protocol. Network Information Center
RFC 791, September 1981.

[25] J. Postel. Transmission Control Protocol. Network In-
formation Center RFC 793, September 1981.

[26] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah
Estrin, Ramesh Govindan, Li Yin, and Fang Yu. Data-
centric storage in sensornets with GHT, a geographic
hash table. Mob. Netw. Appl., 8(4):427–442, 2003.

[27] Y. Rekhter and T. Li. RFC 1771: A Border Gateway
Protocol 4 (BGP-4), March 1995. Obsoletes RFC1654.

[28] K. Scott and S. Burleigh. Bundle protocol specifica-
tion. Internet Draft, Delay Tolerant Networking Re-
search Group, July 2004.

[29] Archana Sekhar, Manoj B. S., and Siva Ram Murthy.
MARVIN: Movement-Aware Routing oVer Interplane-
tary Networks. In The First International Conference
on Sensor and Ad Hoc Communications and Networks
SECON, October 2004.

Omprakash Gnawali, USC. Om-
prakash Gnawali received his S.B. and
M.Eng. degrees in Electrical Engineer-
ing and Computer Science from the Mas-
sachusetts Institute of Technology. He
is a Ph.D. student in Computer Science
at the University of Southern California.
His research interests include computer

networks, distributed systems, and wireless sensor networks.

Mike Polyakov, LM-ATC. Mr. Polyakov
received his MEng in computer science
from Cornell University. Since then he
has worked at Lockheed Martin under
Dr. Bose on the ASCoT and DyMND
projects, focusing on the modeling and
simulation aspect of the projects.

Dr. Prasanta Bose, LM-ATC. Dr. Bose
received his PhD in computer science
from University of Southern California
and MS in Computer Science from Uni-
versity of Massachusetts. He has worked
at Texas Instruments, NASA JPL and
was an Assistant Professor at the George
Mason University prior to joining the

ATC. Dr. Bose leads the Networked Embedded Autonomy
Technology (NEAT) group in ATC, Lockheed Martin Space
Systems. He is the PI of the NASA Autonomous Space Com-
munications Technology (ASCoT) project and the DARPA
DyMND project focused on developing robust coordination
services for in-network control and coordina-tion of large
collection of resource constrained and wireless networked
mobile air and space assets. He is also the Co-PI on a NASA
Living with Star (LWS) project investigating distributed and
collaborative science infrastructures.

Ramesh Govindan, USC Ramesh
Govindan received his B. Tech. degree
from the Indian Institute of Technology
at Madras, and his M.S. and Ph.D. de-
grees from the University of California
at Berkeley. He is an Associate Profes-
sor in the Computer Science Department
at the University of Southern California.

His research interests include Internet routing and topology,
and wireless sensor networks.

13

