
Large-scale Network Protocol Emulation on
Commodity Cloud

Anirup Dutta
University of Houston

adutta2@uh.edu

Omprakash Gnawali
University of Houston

gnawali@cs.uh.edu

ABSTRACT

Network emulation allows us to evaluate network protocol
implementations, typically in higher fidelity than simulations.
This advantage comes at a cost. Emulation often requires
much larger IO or computational resources than simulations.
As a result, it is common to see some research projects
doing simulations with up to hundred thousand nodes while
emulations typically scale up to a few hundred nodes. In this
paper, we present CloudNet, a network protocol emulation
platform that leverages the commodity cloud computing ser-
vice to scale emulations to thousands of nodes. CloudNet uses
a light-weight virtualization technique called LXC containers
to emulate a single node. The network protocol code and
the protocol state for each node is maintained in its respec-
tive container. CloudNet then uses properties of the network
topology to determine where to place these containers among
many physical machines researchers might rent on the cloud
service. CloudNet’s careful mapping of nodes to the containers
makes network performance more predictable and suitable for
emulation even on a shared commodity cloud, which were pre-
viously thought to be unsuitable for serious network emulation.
Through extensive experiments, we establish that CloudNet is
scalable to thousand-node networks while providing accurate
emulation results.

I. INTRODUCTION

The networking research community has a long history of
building tools and methodologies to evaluate network proto-
cols. Theoretical analysis allows us to understand the protocols
at the algorithmic level. We can implement the key ideas of
the protocol in a simulator and study the protocol injecting a
bit of realism, for example, wireless link model and protocol
state machines [1]–[3].

Emulation takes this study of protocols a step further.
We can evaluate the actual implementation of the protocol,
often in the same runtime environment as the deployment
target. Emulation often is resource-intensive. An emulator must
evaluate the entire implementation, not just the core idea
behind the protocol. Despite this disadvantage, emulations are
widely used because they produce results that are similar to
the results on the testbeds, and the target deployments.

Recent advances in node virtualization makes it possible to
emulate a large number of nodes in a single physical machine.
We can run the protocol code for each node in its own virtual
machine and create a network of emulated virtual nodes. We
can thus emulate several nodes in a single machine thereby

enabling emulation of a large network on a small network
of physical machines. This technique however does not scale
because a physical machine cannot host more than a few tens
of virtual machines while providing acceptable performance.

Light-weight virtualization can help scale these emulations
to very large networks. In light-weight virtualization, con-
tainers are the unit of virtualization. Each physical machine
can host several hundred containers. Mininet [4], [5] is a
recent effort that uses this approach and shows how to emulate
a network of several hundred nodes in a single machine.
However, this solution does not scale beyond the number of
containers that can be run in a single machine.

In this paper, we present CloudNet, a network emulator
that can emulate networks with thousands of nodes. Our work
leverages two technology trends to make this possible. First,
CloudNet uses machines provided by the commodity cloud
service. The researchers can perform experiments on a large
number of machines for the small expense of renting machines
from cloud service providers such as Amazon. Second, Cloud-
Net leverages light-weight virtualization technique to further
scale the size of the emulation.

The lack of consistent performance in the shared cloud
environment and the challenge it presents to network experi-
ments have been identified as the key challenge in building an
emulator in the Cloud. In a shared cloud environment such as
Amazon EC2, it is possible for one of our emulation instances
to share the same physical host with an instance running a
webserver of a popular website. When the other instances in
the same physical machine demand more resources, naturally
fewer resources are available to our emulation instances. To
address this challenge, CloudNet only uses Cluster instances,
which have ample computation and communication resources
and come with loose guarantees about resource allocation.
This is in contrast to earlier work that used micro or small
instances, which make large emulation affordable but come
with the inconsistent and unpredictable performance.

While using Cluster instances with ample resources ad-
dresses the performance consistency to some extent, it becomes
prohibitively expensive to emulate large networks. CloudNet
uses light-weight virtualization in each Cluster instance to
economically scale the emulation while providing more con-
sistent networking performance. Thus, CloudNet becomes as
economical as emulation with micro or small instances but
with more consistent performance.

In this paper, we make these contributions:

1

OpenvSwitch Bridge

2 63 4 5

Fig. 1: CloudNet emulation of a 6-node network. The different
colors represent different networks. If we wish to send packets
from 2 to 6 we need to do it via 3,4 and 5.

• We show how to achieve a partially consistent net-
working performance for network emulation in a
shared cloud environment like Amazon EC2.

• We present the design and implementation of an
emulator that economically scales to thousands of
nodes.

• We present experiments to evaluate the correctness
of the such large scale emulators. We use those
experiments to evaluate CloudNet.

• We present, to our knowledge, the first emulation of
DTN protocol on a 1000-node network as a case study
that exercises the capabilities of CloudNet.

II. CLOUDNET DESIGN

In this section, we present the design of CloudNet, which
meets these design goals: scaling to thousand-node networks
and beyond; low cost platform; and correctness of emulation
results.

A. Network Nodes

CloudNet uses light-weight virtualization mechanism
called Linux Containers where each container represents a
single node. The network protocol code for a node runs in
its respective container. We used LXC for launching the con-
tainers in the machine. LXC uses Linux kernel mechanisms to
provide lightweight virtual system with full resource isolation
and resource control for running application or a system [6],
[7]. Due to the shared kernel between the containers, it is
possible to run hundreds of LXC containers, i.e., emulated
nodes, in a single machine while ensuring CPU cycle and
memory isolation across the containers. Thus, because of their
light-weight nature with sufficient resource isolation, LXC
containers are a good choice in node representation in our
goal of designing a scalable emulator.

B. Network Connectivity

Each LXC container represents a node in the network
we wish to emulate. The network connectivity between the
containers represent the link between the nodes.

We configure LXC container with at least two network
interfaces: one connected to the default LXC bridge and the
other connected to the Open vSwitch bridge. Open vSwitch [8]
is a software switch which can be used to connect virtual
machines. Open vSwitch supports many standard protocols

and management interfaces. It allows QoS for each virtual
machine interface. It supports openflow protocol as well as
many tunneling protocols like GRE, IPSEC, etc. The default
LXC bridge and the Open vSwitch bridge are not connected.
We NAT out of the box for the LXC containers through the
LXC bridge and we create the logical network for emulation
experiments using Open vSwitch. CloudNet provides two ways
to define the topology of the emulated network.

1) Creating Topology Using OpenFlow: This approach to
defining emulation topology using OpenFlow [9] is borrowed
from Mininet. When there is a link between the nodes in the
topology we wish to emulate, the controller allows forwarding
between those nodes thereby creating an emulated link. We
attach an OpenFlow controller to Open vSwitch with custom
rules on how Open vSwitch must forward the packets.

2) Creating Topology Using Subnets: We can use subnets
to provide or limit connectivity between different nodes in
the emulated networks. We use the LXC bridge as the default
gateway in our containers. We setup routing rules such that
the packets meant for destination addresses belonging to the
same subnets as the network interfaces of the containers will
go through the Open vSwitch bridge. Any packet meant for
destinations other than those belonging to the same subnets as
container’s interfaces are dropped. Thus, if we need to provide
a link between two nodes, together with our routing rules, we
assign them ip addresses in the same subnet.

The problem of determining the optimal number of subnets
required to emulate a large and complex network and the
membership of each subnet is equivalent to finding maximal
cliques in a graph. Every maximal clique constitutes a subnet.
The nodes belonging to the same clique are members of the
same subnet. If a node is a member of multiple cliques, then
it will be member of multiple subnets, which also means
that it will have multiple virtual interfaces connected to Open
vSwitch. We find the maximal cliques in a graph using the
Bron-Kerbosch algorithm [10] and we used a software library
called ipgraph [11] which implements the Bron-Kerbosch
algorithm.

C. Link Attributes

In many network emulations, the topology may have links
with different loss rates or delays. For example, we may want
to emulate links with propagation delay of several seconds in
a DTN emulation. We use Netem to constrain the bandwidth
and delay of a link.

D. Distributing Nodes Across Instances

Emulating a network with thousands of nodes will require
thousands of containers, which will not fit in a single machine.
Now, we describe how CloudNet distributes the containers
across multiple machines while providing consistent network
performance between the nodes.

We run Open vSwitch in each of the instances. All the
LXC containers in each instance is connected to Open vSwitch
bridges on that instance. We used GRE (Generic Routing
Encapsulation) tunnels to connect the Open vSwitch bridges
on the different instances. Connecting the bridges using GRE
tunnels in Amazon EC2 requires using public IP addresses

for the instances.1 CloudNet requires only a small number of
Cluster Instances to emulate even a large network, and only
the Instance (not individual nodes) needs public IP address.
We use NTP to synchronize the time across the instances.

E. Choice of Instance Type

Previous work has shown that virtualization in Ama-
zon EC2 causes highly unreliable network performance [12].
However in such work, researchers used small instances.
Such inconsistent performance would not meet CloudNet’s
requirement of correct emulation. CloudNet uses a smaller
number of instances with more resources in Amazon EC2,
then uses LXC containers to decrease the number of instances
required to emulate a large network. For example, cluster
Instances have 60.5 GB of RAM with 88 ECUs (equivalent
to 16 cores). These instances can be launched together in a
single placement group to assure high and consistent network
performance between the instances. To emulate a 1000 node
network, with 200 containers per node, we only need five
instances. Because we control the execution environment of
the containers in each instance, we can provide more consistent
network performance across the emulated nodes compared to
running the nodes directly on top of Amazon EC2 and leaving
it to Amazon to provision the network. Furthermore, there
is high and consistent network connectivity between Cluster
instances. Thus, the emulated nodes within these instances
achieve consistent network performance.

F. Difference from Mininet

CloudNet borrows the technique of using lightweight vir-
tualization to emulate a node from Mininet. However, Mininet
can run on a single machine limiting its scalability to the num-
ber of containers one machine can host. CloudNet, on the other
hand, carefully places the containers on different instances
using the maximal clique organization, and connecting them
with the topology defined by the user, thereby scaling beyond
what a single machine can run.

III. EVALUATION

In this section, we study how CloudNet satisfies its design
goals. We use tools such as iperf to validate the correctness
of CloudNet and DTN [13] as a case study to evaluate the
usefulness of CloudNet.

A. Network Performance in Amazon EC2

Correctness is the most important requirement of any
network emulator. To evaluate CloudNet’s correctness, we
create a network topology using CloudNet and run iperf over
those topologies to measure bandwidth and jitter. If CloudNet
emulation is correct and consistent, we expect the results
of measurements in the experiment to match the specified
properties of the topology. Otherwise, CloudNet results are not
correct. In addition, we compare the correctness of emulation
done on CloudNet vs directly on top of Amazon EC2. A
network emulation directly on Amazon EC2 uses an instance
to represent a node and uses virtual interfaces to connect the

1One possible reason is that the visibility of the private IP addresses is
limited to a certain portion of the EC2 cloud.

CloudNet EC2 Medium EC2 Small
Emulation System

0.85

0.90

0.95

1.00

1.05

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

10
0K

bp
s

1M
bp

s

11
M

bp
s

20
M

bp
s

54
M

bp
s

Fig. 2: Boxplot of iperf throughput normalized by the nominal
throughput for the setup varying from 100 Kbps to 54 Mbps.

CloudNet EC2 Medium EC2 Small
Emulation System

0

5

10

15

20

25

30

Jit
te

r (
m

s)

10
0K

bp
s

1M
bp

s

11
M

bp
s

20
M

bp
s

54
M

bp
s

Fig. 3: Boxplot of jitter in path latency measured during
experiments for setups varying from 100 Kbps to 54 Mbps.

instances to create the user specified network topology. This
experiment will help us understand if CloudNet provides any
advantage over running emulation directly on top of Amazon
EC2. In each experiment, we created a small network of 10
nodes over 9 hops and made 50 bandwidth and jitter measure-
ments using iperf. The experiments were performed multiple
times a day over five days (to understand if performance
consistency holds at different times of the day and different
days of the week).

Figure 2 shows throughput achieved by iperf when doing
emulation with CloudNet versus using Amazon EC2 to do
those emulations. The first observation is that iperf achieved
constant normalized throughput across multiple experiments
with 50 iterations each for all throughput settings. Thus, the
measured throughput matches the ground truth. The second
observation is that emulation directly on top of Amazon EC2
medium instances are less consistent (despite much higher in-
stance rental cost as we show later). The results are worse (and
unacceptable) with Amazon EC2 small instances. Thus, we
conclude that throughput available to emulation on CloudNet
is consistent and correct.

Figure 3 shows the jitter in path latency measured during
the experiments. The topologies used in these experiments
were specified to have no jitter. Thus any considerable jitter
could lead to inaccurate emulation results. We observe that
the jitter with CloudNet is smaller than emulation that uses
Amazon EC2 Medium instances, and significantly smaller than
the emulation that uses Amazon EC2 Small instances. Thus,

Normal Uniform Pareto Pareto Normal
1 Hop - EMD 0.6 0.08 0.36 0.04
Error (%) 0.6 0.08 0.36 0.04
9 Hops - EMD 7.29 6.90 7.62 7.8
Error (%) 0.81 0.76 0.84 0.86

TABLE I: Earth movers distance between theoretical and
observed values.

we find that latency measurements on CloudNet emulations
are close to the ground truth.

B. Correctness of Network Impairments

CloudNet can configure links to have certain delays as
required by emulations. For example, create a network where
certain links have a latency of 1s. In this section, we describe
experiments to test if these impairments are correctly emulated
in CloudNet.

In these experiments, we configure links with 100ms la-
tency and 20ms jitter that have normal, pareto, and uniform
distributions. We use normal and pareto distributions provided
in Netem but inject our own uniform distribution table to
Netem kernel module.

a) One-hop Experiments: We sent 2000 UDP packets
between 2 nodes and measured the packet latency between the
nodes. If CloudNet correctly emulates the delays, we expect
the observed latency to be the same as the intended (i.e., gener-
ated) latency. Figure 4 shows the results from this experiment
which compares observed, generated and theoretical latencies.
We find that the plots of the observed delay values confirm to
the type of distribution used for introducing delay with less
than 0.6 percent error as shown in Table I.

b) Multi-hop Experiments: We use CloudNet to setup
a 10 node, i.e., 9-hop network. We sent UDP packets between
the nodes at the two ends of the topology. If CloudNet works
correctly, we expect the packets to take an average of 900ms to
travel between the nodes. Figure 5 shows that that the observed
latency closely matches the generated latency. Table I shows
that the error is 0.76%-0.86%.

c) Correctness of Latency Distributions and Averages:
Next we evaluate if the distribution of latency generated by
CloudNet is correct. We configure the nodes to generate
latency with normal distribution in the 9-hop topology. The
sum of independent normal distributions is also a normal
distribution: we expect the 9-hop latency to be normally
distributed. We performed QQ tests on the observed delay
values for the 1 hop and 9 hop experiments to determine if the
delays were distributed normally. We performed the normality
test on the delay values. We found the P value for 1 hop is
0.22 and for 9 hops it is 0.23. The mean in case of the 9
hop network should be equal to 9 times the mean for 1 hop
network. We found that the measured one-hop to 9-hop latency
confirm to this ratio with less than 0.77% error as shown in
Table II.

Through these experiments, we find that CloudNet can
provide controlled and correct link properties to network
emulation.

Distribution 1 Hop De-
lay (sec)

9 Hop De-
lay (sec)

9 Hop Delay / 1
Hop Delay

Error (%)

Normal 0.0998 0.9045 9.06 0.66
Uniform 0.1002 0.9044 9.02 0.22
Pareto 0.0994 0.8984 9.03 0.33
Pareto Normal 0.0992 0.9004 9.07 0.77

TABLE II: Latency analysis for the different distributions.

10 20 30 40 50 60 70 80 90 100
Node Pairs

99.6

99.8

100.0

100.2

100.4

Th
ro

ug
hp

ut
 (K

bp
s)

Fig. 6: Iperf throughput results with maximum bandwidth
limited to 100kbps on the 1000 node network. The node pairs
have been sorted by the mean of the throughput values.

C. Scalability

To test the scalability of CloudNet, we generate a 1000
node topology with minimum, average, and maximum node
degree of 1, 6.4, and 13 respectively. We setup this topology
using the technique described in Section II. Every instance
contained 200 containers. So we used 5 cluster instances.
We randomly picked 100 pair of random nodes resulting in
maximum and minimum path lengths of 22-hop and 1-hop
respectively. We then used iperf to send UDP packets between
all the pair of nodes simultaneously with each flow with a
cap of 100kpps. The results from the tests are shown in the
Figure 6. The net throughput achieved per flow is close to the
expected value of 100kbps.

To test if the latencies stay close to the ground truth even
when the user topologies add delays, we emulate a 1000 node
network with a link latency of 1 second on each link. Table III
shows the mean RTT and standard deviation in delay between
random pairs of nodes at 1-4 hops. There is a small base
latency between the node-pairs: this is a system overhead of
CloudNet. We observe that the overhead increases as expected
with the number of hops but stays small.

To compare Cloudnet’s scalability with Mininet, we per-
form a 1000 node experiment on Mininet on a 8 core server
with 48 GB of RAM. This experiment stressed Mininet in
two ways. First, the experiment setup took more than an hour
and the machine became unresponsive. Second, we were not
able to use ping to send data between the nodes: the system
dropped the packets because this experiment was overloading
the server. This result should not come as a surprise: Mininet
uses a single machine architecture and is designed to work
with a few hundred nodes.

Through these experiments, we found that CloudNet can
scale to 1000-node topologies with predictable and expected
performance.

20 40 60 80 100 120 140 160 180
Delay (ms)

0.000

0.005

0.010

0.015

0.020

0.025

No
rm

al
iz

ed
Theoretical
Generated
Observed

Link Latency - Normal Distribution

60 70 80 90 100 110 120 130 140
Delay (ms)

0.000

0.005

0.010

0.015

0.020

0.025

No
rm

al
iz

ed

Theoretical
Generated
Observed

Link Latency - Uniform Distribution

80 100 120 140 160 180
Delay (ms)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

No
rm

al
iz

ed

Theoretical
Generated
Observed

Link Latency - Pareto Distribution

Fig. 4: Theoretical vs Generated vs Observed delays in a 1 hop network with link latency based on given distributions.

600 700 800 900 1000 1100 1200
Delay (ms)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

No
rm

al
iz

ed

Theoretical
Generated
Observed

Link Latency - Normal Distribution

600 700 800 900 1000 1100 1200
Delay (ms)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

No
rm

al
iz

ed

Theoretical
Generated
Observed

Link Latency - Uniform Distribution

700 800 900 1000 1100 1200 1300
Delay (ms)

0.000

0.002

0.004

0.006

0.008

0.010

No
rm

al
iz

ed

Theoretical
Generated
Observed

Link Latency - Pareto Distribution

Fig. 5: Theoretical vs Generated vs Observed delays in a 9-hop network with link latency based on given distributions.

Hops RTT
Mean (ms) σ

1 2000.98 2.28
2 4002.16 5.89
3 6005.70 9.20
4 8006.28 10.64

TABLE III: RTT for paths of different hops in a 1000 node
network. Each link was configured with a delay of 1s.

D. Case Study

As a case study of a realistic use of CloudNet, we perform
large scale experiments with DTN2. We randomly chose
100 pair of nodes from a multi-hop 1000 node topology.
We use dtnperf and dtping to send data between the node
pairs. The one hop goodput obtained is similar to what was
reported in prior work [14] when the authors did experiments
with physical machines. The multi-hop goodputs, as expected,
decrease with an increase in path length (Figure 7). Figure 8
shows the dtnping packet latency between the node pairs. The
high variation in latency is due to bundle queuing in the
intermediate hops as different flows cross each other. Thus,
the throughput and latencies we obtained in our experiment
match the expected output and also what has been previously
reported.

Table IV compares the cost of performing a similar exper-
iment using small or medium instances separately for each
node. The cost analysis affirms that CloudNet provides a
cheaper alternative to performing emulation directly on top
of EC2 instances, while providing correct results and scaling
beyond state-of-the art solutions such as Mininet.

Node Pairs
0.0

0.5

1.0

1.5

Go
od

pu
t(M

bp
s)

0 20 40 60 80
Node Pairs

0.0

0.5

1.0

1.5

2.0

Go
od

pu
t(M

bp
s) 1

Ho
p

2
Ho

ps

3
Ho

ps

4
Ho

ps

5
Ho

ps

6
Ho

ps 7+ Hops

Fig. 7: Throughput achieved between node pairs using DTN
when each link has 1 s latency (top) and without any network
impairment (bottom). Payload size is 100KB.

IV. RELATED WORK

In this section, we overview the types of tools the network-
ing community has built to evaluate network protocols.

Link Emulation: Single link emulation can be done on
hardware (using channel emulators) or on software (using tools
such as Netem). Prior work has shown that when correctly
configured, Netem provides a realistic estimation of impaired
network conditions and is sufficient for most networking
experiments [15].

0 20 40 60 80
Node Pairs

0

10

20

30

40

50

60

70
Pi

ng
 L

at
en

cy
(s

)

1
Ho

p

2
Ho

ps

3
Ho

ps

4
Ho

ps

5
Ho

ps

6
Ho

ps 7+ Hops

Fig. 8: End-to-End latency for each pair of node using dtnping.

Network Emulation: Mininet [4] [5] uses light-weight
virtualization by isolating certain OS resources, thus allowing
emulation of large networks in a single machine. However,
scalability becomes an issue when we want to emulate larger
networks than can be tested in a single physical machine.
Emulab [16] light-weight virtualization technique, FreeBSD
jails, to setup multiple virtual interfaces per process group,
similar to Mininet and CloudNet. CloudNet provides better
resource isolation across the emulated nodes than Emulab and
shows how we can use it on the commodity clouds. There is
some prior work in data centers to optimize VM placement and
routing [17]. CloudNet uses the concept of placement groups
in Amazon EC2 where the virtual machines are placed as close
to each other so that we can efficiently use the resources.

Network Emulation Timing: Time-Warp [18] explores the
possibility of using time dilation in network emulation exper-
iments. Future version of CloudNet may use this technique
to offer added consistency in performance for emulations that
requires very high-bandwidth. Slicetime is another effort to
provide scalable and accurate network emulation [19]. Slice-
time makes the simulations independent of real time constraint
thus allowing simulation of complex and high performance
networks when we have limited physical resources.

V. DISCUSSION

The experiments in this paper showed emulation of homo-
geneous network. CloudNet design accommodates emulation
of heterogeneous networks. The containers within an instance
share the host operating system. However, emulated nodes of
different platforms can be placed on different instances running
different OS. Heterogeneity in CPU and memory resources can
be implemented directly with the container mechanism.

A disadvantage of our setup is we cannot assure complete
fidelity while using Amazon EC2 since we have no control
over the infrastructure. However the containers that we launch
within an Amazon EC2 instance are completely controllable.
We can control the amount of memory, CPU and bandwidth
available to them. Thus we turn an uncontrolled system into a
system that provides predictable performance.

CloudNet Medium Small EC2 Region
Unit Price $2.4 $0.12 $0.06 U.S. East(N. Virginia)
Number of Instances 5 1000 1000 U.S. East(N. Virginia)
Total Price $12 $120 $60 U.S. East(N. Virginia)

TABLE IV: Cost of 1-hr emulation of 1000-node network

VI. CONCLUSIONS

In this paper, we presented CloudNet, which is an emulator
that runs on cloud services such as Amazon EC2. CloudNet
uses techniques to achieve consistent network performance de-
spite having little control over the EC2 instrastructure. Through
extensive experiments, we showed that the emulator replicates
the results from experiments that used physical machines. We
presented the results from emulation of DTN on a 1000-node
network. Thus, we showed that CloudNet meets the design
requirements of scalability and affordability. As future work,
we will implement CloudNet on other cloud service providers.

REFERENCES

[1] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and
scalable simulation of entire tinyos applications,” in ACM SenSys.
ACM, 2003, pp. 126–137.

[2] ns2, “The network simulator,” 1989a.
[3] G. Pongor, “Omnet: Objective modular network testbed,” in MASCOTS,

1993.
[4] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in HotNets, 2010, p. 19.
[5] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,

“Reproducible network experiments using container-based emulation,”
in CoNext, 2012.

[6] L. Organization, “lxc linux containers,” http://lxc.sourceforge.net/.
[7] S. Graber, “lxc containers in ubuntu,” https://www.stgraber.org/2012/05/

04/lxc-in-ubuntu-12-04-lts/.
[8] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,

“Extending networking into the virtualization layer,” Proc. HotNets
(October 2009), 2009.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM CCR, vol. 38, no. 2, 2008.

[10] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” CACM, vol. 16, no. 9, pp. 575–577, 1973.

[11] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, 2006.

[12] G. Wang and T. E. Ng, “The impact of virtualization on network
performance of amazon ec2 data center,” in INFOCOM. IEEE, 2010.

[13] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in SIGCOMM. ACM, 2003.

[14] W.-B. Pottner, “An empirical performance comparision of dtn
bundle protocol implementations,” http://www.ibr.cs.tu-bs.de/papers/
poettner-tr201108.pdf.

[15] E. Kissel and M. Swany, “Validating linux network emulation,” http:
//damsl.cs.indiana.edu/projects/phoebus/netem validate.pdf.

[16] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau, “Large-scale virtualization in the emulab
network testbed,” in NSDI. USENIX Association, 2008, pp. 113–128.

[17] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm place-
ment and routing for data center traffic engineering,” in INFOCOM.
IEEE, 2012, pp. 2876–2880.

[18] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M.
Voelker, “To infinity and beyond: time warped network emulation,” in
SOSP. ACM, 2005, pp. 1–2.

[19] E. Weingärtner, F. Schmidt, H. Vom Lehn, T. Heer, and K. Wehrle,
“Slicetime: A platform for scalable and accurate network emulation,”
in NSDI. USENIX Association, 2011, pp. 19–19.

