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Abstract. The literature on programming sensor networks has focused so far on
providing higher-level abstractions for expresdimgal node behavioKairosis a
natural next step in sensor network programming in that it allows the-pnuger
to express, in a centralized fashion, the desgtedbal behavior of a distributed
computation on the entire sensor network. Kairos’ compile-time and rurstirne
systems expose a small set of programming primitives, while hiding fherpro-
grammer the details of distributed-code generation and instantiation, relatate
access and management, and inter-node program flow coordinatibis paper,
we describe Kairos’ programming model, and demonstrate its suitabilioyghr
actual implementation, for a variety of distributed programs—both iniragtre
services and signal processing tasks—typically encountered in seesoork
literature: routing tree construction, localization, and object tracking.e@per-
imental results suggest that Kairos does not adversely affect tfepance or
accuracy of distributed programs, while our implementation experieswggest
that it greatly raises the level of abstraction presented to the programmer

1 Introduction and Motivation

Wireless sensor networks research has, to date, made siyeraslvances in platforms
and software services [1-3]. The utility and practicalitylense sensing using wireless
sensor networks has also been demonstrated recently [4iShow time to consider
an essential aspect of sensor network infrastructure—stfgroprogrammingwire-
less sensor network applications and systems componeatsutably high-level of
abstraction. Many of the same reasons that have motivatedetesign of the net-
working stack for sensor networks (energy-efficiency,edtd#ht network use models)
also motivate a fresh look at programming paradigms foremegworks.

Two broad classes of programming models are currently bieirgstigated by the
community. One class focuses on providing higher-levetrabgons for specifying a
node’slocal behaviorin a distributed computation. Examples of this approachuite
the recent work on node-local or region-based abstrac{ior®. By contrast, a sec-
ond class considers programming a sensor netwotke large (this has sometimes
been callednacroprogramminpy One line of research in this class enables a user to
declaratively specify a distributed computation over aelgiss sensor network, where



the details of the network are largely hidden from the progreer. Examples in this
class include TinyDB [9, 10], and Cougar [11].

Kairos’ programming model specifies tgbal behaviorf a distributed sensornet
computation using aentralizedapproach to sensornet programming. Kairos presents
an abstraction of a sensor network as a collection of nodedti(® 3) that can all be
tasked together simultaneously withirsiagle program. The programmer is presented
with three constructs: reading and writing variables ataspdéterating through the one-
hop neighbors of a node, and addressing arbitrary nodesgdsily these three simple
language constructs, programmanglicitly express both distributed data flow and dis-
tributed control flow. We argue that these constructs are aégural for expressing
computations in sensor networks: intuitively, sensor oekvalgorithms processamed
data generated at individual nodes, often by moving suchtdaither nodes. Allowing
the programmer to express the computation by manipulainigblesat nodesallows
us to almost directly use “textbook” algorithms, as we shatei in detail in Section 3.2.

Given the single centralized program, Kairos’ compilediand runtime systems
construct and help execute a node-specialized versioreafdmpiled program for all
nodes within a network. The code generation portion of Kaisoimplemented as a
language preprocessor add-on to the compiler toolchaihehative language. The
compiled binary that is the single-node derivation of th&ributed program includes
runtime calls to translate remote reads and, sometimesl, Wr@tes into network mes-
sages. The Kairos runtime library that is present at evedenmplements these run-
time calls, and communicates with remote Kairos instancesanage access to node
state. Kairos idanguage-independetin that its constructs can be retrofitted into the
toolchains of existing languages.

Kairos (and the ideas behind it) are related to shared-meivased parallel pro-
gramming models implemented over message passing infcastes. Kairos is dif-
ferent from these in one important respect. It leverage®biservation that most dis-
tributed computations in sensor networks will rely eventual consistenayf shared
node state both for robustness to node and link failure, aneifergy efficiency. Kairos’
runtimeloosely synchronizestate across nodes, achieving higher efficiency and greater
robustness over alternatives that provide tight disteugrogram synchronization se-
mantics (such Sequential Consistency, and variants thEr2p.

We have implemented Kairos as an extension to Python. Dupattesconstraints
of this paper, we describe our implementation of the languadensions and the run-
time system in detail in a technical report [13]. On Kairog, mave implemented three
distributed computations that exemplify system serviaaes signal processing tasks
encountered in current sensor networks: constructing destigoath routing tree, local-
izing a given set of nodes [2], and vehicle tracking [14]. Waibit each of them in
detail in Section 3 to illustrate Kairos’ expressibilitye\ihen demonstrate through ex-
tensive experimentation (Section 4) that Kairos’ level la$taaction does not sacrifice
performanceyet enablesompactandflexiblerealizations of these fairly sophisticated
algorithms. For example, in both the localization and viehiiacking experiments, we
found that the performance (convergence time, and netwassage traffic) and ac-
curacy of Kairos are within 2x of the reported performanceexblicitly distributed
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Fig. 1. Taxonomy of Programming Models for Sensor Networks

original versions, while the Kairos versions of the progsaare more succinct and, we
believe, are easier to write.

2 Related Work

In this section, we give a brief taxonomy (Figure 1) of sensbiprogramming and
place our work in the context of other existing work in theaar€he term “sensor-
net programming” seems to refer to two broad classes of waakwe categorize as
programming abstractionand programming supportThe former class is focused on
providing programmers with abstractions of sensors andmetata. The latter is fo-
cused on providing additional runtime mechanisms that Biynprogram execution.
Examples of such mechanisms include safe code executiorliable code distribu-
tion.

We now consider the research on sensor network programrbgtgaations. Broadly
speaking, this research can be sub-divided into two sudseta one sub-class focuses
on providing the programmer abstractions that simplifytdsk of specifying the node
local behaviorof a distributed computation, while the second enablesrprogers to
express thglobal behaviorof the distributed computation.

In the former sub-class, three different types of prograngnaibstractions have been
explored. For example, Liet al. [15] and Cheonget al. [16] have considered node
group abstractions that permit programmers to express eonaation within groups
sharing some common group state. Data-centric mechanienused to efficiently im-
plement these abstractions. By contrast, Mainlandl. [8] and Whitehouset al. [7]
show that topologically defined group abstractions (“nb@hoods” and “regions” re-
spectively) are capable of expressing a number of local\betsapowerfully. Finally,
the work on EIP [17] provides abstractions for physical otgen the environment,
enabling programmers to express tracking applications.

Kairos falls into the sub-class focused on providing aletimas for expressing the
global behavior of distributed computations. One line ae@ch in this sub-class pro-



videsnode-independergbstractions—these programming systems do not contain ex-
plicit abstractions for nodes, but rather express a digtieith computation in a network-
independent way. Thus, the work on SQL-like expressive bung-incomplete query
systems €.g., TinyDB [10, 9] and Cougar [11]), falls into this class. Anettbody of
work provides support for expressing computations oveickigopologies [18, 19] or
task graphs [20] which are then dynamically mapped to a nétimstance. This repre-
sents a plausible alternative to macroprogramming seredaronks. However, export-

ing the network topology as an abstraction can impose sogidityi in the program-
ming model. It can also add complexity to maintaining the piag between the logical
and the physical topology when nodes fail.

Complementary to these approachesje-dependemtbstractions allow a program-
mer to express the global behavior of a distributed comjmutan terms of nodes and
node state. Kairos, as we shall discuss later, falls int® ¢ldss. As we show, these
abstractions are natural for expressing a variety of thisteid computations. The only
other piece of work in this area is Regiment [21], a recentw@rhile Kairos focuses
on a narrow set of flexible language-agnostic abstractiRagiment focuses on explor-
ing how functional programmingaradigms might be applied to programming sensor
networks in the large, while Split-C [22] provides “spliidal-global address spaces to
ease parallel programming that Kairos also provides tHiahig remote variable access
facility, but confines itself to the “C” language that lacksieh object-oriented data
model and a language-level concurrency model . Therefoesfundamental concepts
in these two works are language-specific.

Finally, quite complementary to the work on programmingtedusions is the large
body of literature devoted to systems in support of netwadgmmming. Such sys-
tems enable high-level composition of sensor network apptins (Sensorware [23]
and SNACK [24]), efficient distribution of code (Deluge [25%upport for sandboxed
application execution (M&t[26]), and techniques for automatic performance adapta-
tion (Impala [27]).

3 Kairos Programming Model

In this section, we describe the Kairos abstractions arnclidistheir expressibility and
flexibility using three canonical sensor network distrdaliapplications: routing tree
construction, ad-hoc localization, and vehicle tracking.

3.1 KairosAbstractionsand Programming Primitives

Kairos is a simple set of extensions to a programming langulaat allows program-
mers to express the global behavior of a distributed contiputaKairos extends the
programming language by providing three simple abstrastio

The first of these is throdeabstraction. Programmers explicitly manipulate nodes
and lists of nodes. Nodes are logicatigmedusing integer identifiers. The logical nam-
ing of nodes doesot correspond to a topological structure. Thus, at the timerof p
gram composition, Kairos does not require programmerseoifpa network topology.
In Kairos, thenode datatype exports operators like equality, ordering (basedode



name), and type testing. In addition, Kairos providesde | i st iterator data type for
manipulating node sets.

The second abstraction that Kairos provides is the listrad-hop neighborsf a
node. Syntactically, the programmer callget _nei ghbor s() function. The Kairos
runtime returns the current list of the node’s radio neighb&iven the broadcast na-
ture of wireless communication, this is a natural abstoacfor sensor network pro-
gramming (and is similar teegions[8], and hoods[7]). Programmers are exposed to
the underlying network topology using this abstraction. &inds program typically is
specified in terms of operations on the neighbor list; it magstruct more complex
topological structures by iterating on these neighbors.

The third abstraction that Kairos providegesnote data accesaamely the ability
to read from variables at named nodes. Syntactically, thgrammer uses\aar i abl e@ode
notation to do this. Kairos itself does not impose any reitms on which remote vari-
ables may be read where and when. However, Kairos’ compitensions respect the
scoping, lifetime, and access rules of variables imposethéyanguage it is extend-
ing. Of course, variables of types with node-local meanmg.(file descriptors, and
memory pointers) cannot be meaningfully accessed remotely
Node Synchronization: Kairos’ remote access facility effectively provides a star
memory abstraction across nodes. The key challenge (antkatjad source of ineffi-
ciency) in Kairos is the messaging cost of synchronizingenstdte. One might expect
that nodes would need to synchronize their state with otbdes (update variable val-
ues at other nodes that have cached copies of those variablesordinate writes to a
variable) often. In Kairos, only a node may write to its vateg thus mutually exclusive
access to remote variables is not required; thereby, weedilsinate typically subtle
distributed programming bugs arising from managing coreairwrites.

Kairos leverages another property of distributed algargtor sensor networks in
order to achieve low overhead. We argue that, for fairly ameéntal reasons, distributed
algorithms will rely on a property we cadventual consistencindividual intermediate
node states are not guaranteed to be consistent, but, ilh$keaee of failure, the com-
putation eventually converges. This notion of eventualsisiency is loosely molded
on similar ideas previously proposed in well-known systensh as Bayou [28]. The
reason for this, is, of course, that sensor network algmstineed to be highly robust
to node and link failures, and many of the proposed algostfonsensor networks use
soft-state techniques that essentially permit only ew@rttonsistency.

Thus, Kairos is designed under the assumption lth@ge synchronpf node state
suffices for sensor network applications. Loose synchroegma that a read from a
client to a remote object bloclanly until the referenced object is initialized and avail-
able at the remote node andton every read to the remote variable. This allows nodes
to synchronize changed variables in a lazy manner, theredhycing communication
overhead. However, a reader might be reading a stale valgafable, but because of
the way distributed applications are designed for sendwrarks, the nodes eventually
converge to the right state. Where this form of consistenayadequate, we provide a
tighter consistency model, as described at the end of thit®se
The Mechanics of Kairos Programming: Before we discuss examples of program-
ming in Kairos, we discuss the mechanics of programming aoglrpm execution (Fig-
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Fig. 2. Kairos Programming Architecture

ure 2). As we have said before, the distinguishing featukéaifos is that programmers
write a singlecentralizedversion of the distributed computation in a programming lan
guage of their choice. This language, we shall assume, lessebéended to incorporate
the Kairos abstractions. For ease of exposition, assunta theogrammer has written
a centralized prograr® that expresses a distributed computation; in the rest af thi
section, we discuss the transformationdRoperformed by Kairos.

Kairos’ abstractions are first processed usingreprocessomwhich resides as an
extension to the language compiler. ThRss first pre-processed to generate annotated
source code, which is then compiled into a binBgyusing the native language com-
piler. While P represents a global specification of the distributed coatpn, Py, is a
node-specific version that contains code for what a singteermes at any time, and
what data, both remote and local, it manipulates.

In generatindg?y, the Kairos preprocessor identifies and translates refeseto re-
mote data into calls to the Kairosntime Py, is linked to the Kairos runtime and can be
distributed to all nodes in the sensor network through somnm fof code distribution
and node re-programming facility [29, 25]. When a copy isansiaited and run on each
sensor node, the Kairos runtime exports and manages praguéables that are owned
by the current node but are referenced by remote nodes; thésets are calledhan-
aged objectsn Figure 2. In addition, it also caches copies of managedatbjowned
by remote nodes in itsached objectpool. Accesses to both sets of objects are man-
aged through queues as asynchronous request/reply mgesbagare carried over a
potentially multihop radio network.

The user program that runs on a sensor node sytishronouslynto Kairos runtime
for reading remote objects, as well as for accessing localaged objects. These syn-
chronous calls are automatically generated by the prepsoceThe runtime accesses
these cached and managed objects on behalf of the progransa#ipending the call-
ing thread. The runtime uses additional background threadsanage object queues,



1: void buildtree(node root)

2: node parent, self;

3: unsi gned short dist_fromroot;

4: node_l i st nei ghboring_nodes, full_node_set;

5 unsi gned int sleep_interval =1000;
Illnitialization

6 ful | _node_set =get _avai | abl e_nodes();

7: for (node tenp=get_first(full_node_set); tenp!=NULL; tenp=get_next(full_node_set))

8: sel f=get _| ocal _node_id();

9: if (tenp==root)

10: dist_fromroot=0; parent=self;

11: el se dist_fromroot=INF;

12: nei ghbori ng_nodes=creat e_node_l i st (get _nei ghbors(tenp));

13: full _node_set =get _avai | abl e_nodes();

14: for (node iterl=get_first(full_node_set); iter1!=NULL; iterl=get_next(full_node_set))
15: for(;;) //Event Loop

16: sl eep(sleep_interval);

17: for (node iter2=get_first(neighboring_nodes); iter2!=NULL; iter2=get_next(neighboring_nodes))
18: if (dist_fromroot@ter2+1<dist_fromroot)

19: di st_fromroot=dist_fromroot@ter2+1;

20: parent=iter2;

Fig. 3. Procedural Code for Building a Shortest-path Routing Tree

but this aspect is transparent to the application, and thkcapion is only aware of the
usual language threading model.

3.2 Examplesof Programming with Kairos

We now illustrate Kairos’ expressibility and flexibility lyescribing how Kairos may
be used to program three different distributed computatibat have been proposed for
sensor networks: routing tree construction, localizatéord vehicle tracking.

Routing Tree Construction In Figure 3, we illustrate aompletekairos program for
building a routing tree with a given root node. We have impmaiad this algorithm,
and evaluate its performance in Section 4. Note that ourramgmplements shortest-
path routing, rather than selecting paths based on linkitguaetrics [30]: we have
experimented with the latter as well, as we describe below.

The code shown in Figure 3 captures the essential functipnavolved in con-
structing a routing tree while maintaining brevity and itiait shows how a centralized
Kairos task looks, and illustrates how the Kairos primiiae used to express such a
task. Program variabléi st f r omr oot is the only variable that needs to be remotely
accessed in lines 18-19, and is therefonesaaged objedt a source node andtached
objectat the one-hop neighbors of the source node that programwatigtiead this vari-
able. The program also shows how tiwde andnode_l i st datatypes and their API's
are usedget _avai | abl e_nodes() inlines 6 and 13 instructs the Kairos preprocessor
to include the enclosed code for each iterated node; it atsages an iterator handle
that can be used for addressing nodes from the iteratorsppetive, as shown in line
12. Finally, the program shows how thet _nei ghbor s() function is used in line 12
to acquire the one-hop neighbor list at every node.

The event loop between lines 15-20 that runs at all nodeg@ainpicks a short-
est path from a node to theot node. Our implementation results show that the path
monotonically converges to the optimal path, thereby destrating progressive cor-
rectness. Furthermore, the path found is stable and doeshaoge unless there are
transient or permanent link failures that cause nodes tateennittently unreachable.



This event loop illustrates how Kairos leverages eventoabistency. The access
to the remote variabldi st f r omr oot need not be synchronized at every step of the
iteration; the reader can use the current cached copy, and lagy update mechanism
to avoid overhead. As we shall see in Section 4, the conveggparformance and the
message overhead of loose synchrony in real-world expatsnig reasonable. We also
tried metrics other than shortest hop count (such as fixingnta according to available
bandwidth or loss rates, a common technique used in redéwouting systems [3]),
and we found that the general principle of eventual consistand loose synchrony
can be applied to such scenarios as well.

Let us examine Figure 3 for the flexibility programming to tkairos model af-
fords. If we want to change the behavior of the program to lihggree construction
algorithm commence at a pre-set time that is programmedariase station node
with id O, we could add a single line before the start of the () {} loop at line
7:sleep(starting.tine@-get _current_tinme()). The runtime would then au-
tomatically fetch thest art i ng_t i me value from node 0.

Distributed L ocalization using Multi-lateration Figure 4 gives a complete distributed
program for collaboratively fixing the locations of nodeghwiinknown coordinates.
The basic algorithm was developed by Savvieteal. [2]. Our goal in implementing this
algorithm in Kairos was to demonstrate that Kairos is flexiéhd powerful enough to
program a relatively sophisticated distributed compatatiWWe also wanted to explore
how difficult it would be to program a “textbook” algorithm Kairos, and compare the
relative performance of Kairos with the reported originatsion (Section 4).

The goal of the “cooperative multi-lateration” algorithetdo compute the locations
of all unknown nodes in a connected meshed wireless gragm ganging measure-
ments between one-hop neighboring nodes and a small seacdib@odes that already
know their position. Sometimes, it may happen that thermatenough beacon nodes
in the one-hop vicinity of an unknown node for it to matheroally laterize its loca-
tion. The basic idea is to iteratively search for enough bea@nd unknown nodes in
the network graph so that, taken together, there are enoegisumements and known
co-ordinates to successfully deduce the locations of &lhawn nodes in the sub-graph.

Figure 4 shows the complete code for the cooperative matkirhtion algorithni.
The code localizes non-beacon nodes by progressively dipatihe subgraphs(bgr aph_t o | ocal i ze),
considered at a given node with next-hop neighbors of utilazhleaf vertexesunl ocal i zed_| eaves),
and is an implementation of Savvides’ algorithm [2]. Thegass continues until either
all nodes in the graph are considered (lines 20-25) and #hyghgs deemed unlocaliz-
able, or until the initiator localizes itself (using the diaty functionsubgr aph_check())
after acquiring a sufficient number of beacon nodes. Thignara once again illustrates
eventual consistency because the varidhleal i zed@ode is a monotonic boolean,
and eventually attains its correct asymptotic value wheaosed in an event loop. We
also found an interesting evidence to the value of Kairostredized global program
specification approach—we encountered a subtle logicahécarase recursion) bug in

1 Of course, we have not included the low-level code that actually cormpiéerange estimates
using ultrasound beacons. Our code snippet assumes the existamoaeeibcal OS/library
support for this purpose.



1: void CooperativeMiltilateration()

2:  bool ean localized=fal se, not_localizable=fal se, is_beacon=GPS_avail able();
3: node sel f=get_| ocal _node_id();
4: graph subgraph_to_l ocal i ze=NULL;

5. node_list full_node_set=get_avail abl e_nodes();
6: for (node iter=get _first(full _node_set); iter!=NULL; iter=get_next(full_node_set)))
Il At each node, start building a |ocalization graph

7. participating_nodes=create_graph(iter);

8: node_| i st nei ghboring_nodes=get _nei ghbors(iter);

9: while ((!localized || !is_beacon) && !not_localizable)

10: for (node tenp=get_first(neighboring_nodes); tenp!=NULL; tenp=get_next (nei ghbori ng_nodes))

/1 Extend the subgraph with neighboring nodes

11: extend_graph(subgraph_to_l ocalize, tenp, localized@enp||is_beacon@ enp?beacon: unknown) ;
//See if we can localize the currently available subgraph

12: if (graph new y_| ocalized_g=subgraph_check(subgraph_to_| ocalize))

13: node_l i st new y_localized_| =get _vertices(new y_| ocalized_g);

14: for (node tenp=get_first(newy_localized_|); tenp!=NULL; tenp=get_next(newy_|ocalized_l))

15: if (temp==iter) localized=true;

16: continue;
/11f not, add nodes adjacent to the |eaves of the accunul ated subgraph and try again

17 node_| i st unlocalized_| eaves;

18: unl ocal i zed_| eaves=get _| eaves(subgraph_to_l ocal i ze);

19: bool ean i s_ext ended=f al se;

20: for (node tenp=get_first(unlocalized_| eaves); tenp!=NULL; tenp=get_next(unlocalized_| eaves))

21: node_l i st next_hop_| =get _nei ghbors(tenp);

22: for (node tenpl=get_first(next_hop_l); tenpl!=NULL; tenpl=get_next(next_hop_Il))

23: ext end_graph(subgraph_to_l ocalize, tenpl, |ocalized@enpl||is_beacon@ enpl?beacon: unknown);

24: i s_extended=true;

25: if (!is_extended) not_|ocalizabl e=true;

Fig. 4. Procedural Code for Localizing Sensor Nodes

the original algorithm described in [2] in a locak(, bottom-up, node-specific) manner,
that became apparent in Kairos.

Vehicle Tracking For our final example, we consider a qualitatively differapplica-
tion: tracking moving vehicles in a sensor field. The progiarkigure 5 is a straight-
forward translation of the algorithm described in [14]. §hlgorithm uses probabilistic
techniques to maintain belief states at nodes about therduocation of a vehicle in
a sensor field. Lines 14-16 correspond to step 1 of the algordiven in [14, p. 7]
where nodes diffuse their beliefs about the vehicle locationes 17-21 compute the
probability of the observatior ;1 at every grid location given vehicle locatiof, 1 at
timet+ 1 (step 2 of the algorithm) using the latest sensing sammlevahicle dynam-
ics. Lines 23-25 compute the overall posteriori probapitif the vehicle position on
the rectangular grid after incorporating the latest pamtieprobability (step 3 of the
algorithm). Finally, lines 26-40 compute the informatiatilities, I,’s, at all one-hop
neighboring nodek for every node, and pick th&t= argmaxly that maximizes this
measure (steps 4 and 5). This node becomes the new “mastks’i@o, it executes the
steps above for the next epoch, using data from all othersiiodiae process.

This program illustrates an important direction of futurerlvin Kairos. In this al-
gorithm, the latest values qf(z.1/%+1)[X|[y]@neighbors must be used in line 33 at
the master because these)|[x][y]'s are computed at each sensor node using the latest
vehicle observation sample. With our loose synchronizatimdel, we cannot insure
that the master uses these latest values computed at théersemsor nodes because
stale cached values may be returned instead by the masteskKantime, thereby ad-
versely impacting the accuracy and convergence time of#lo&ing application. There
are two possible solutions to this. One, which we have impleied currently in Kairos,
is to provide a slightly tighter synchronization model theg callloop-level synchrony



1: void track.vehicle()

2:  bool ean master=true;

3. float %41, nor mal i zi ngconst;

4 float p(x|z)[ MAXX] [ MAXY],  p(x;q1/70)[ MAXX] [ MAXCY]

P21 (KD MAXX [ MAXY] P g2, 1 )] MAXX [ MAXY], P, 1 17), Pxi1 7o) MAXX] [ MAXLY]
5 float max=l; node argmax.ly, self=get.ocal .node.id();
6: node.list full_node_set=get _avail abl e_-nodes();
7: for (node iter=get first(full_nodeset); iter!=NULL; iter=get_next(full_nodeset))
8 for (int x=0; X<MAXX, x++)
9: for (int y=0; y<MAXY,; y++)

10: P04 [20) X1 [¥] = AR XS WAXY
11: or(;;)
12: sl eep();
13: if (master)
14: for (int x=0; x<MAXX; x++)
15: for (int y=0; y<MAXY; y++)

) 8(\/X2+y2 —\/[x2+y2 —v)p(x|Z)
16: PO¢1 XTIyl = > ;

0<xX' <MAXX 0<y <MAX.Y 5(\/><’2 +y2 /32 +y2 —v)
17: 7 q=sensez();
18: nor mal i zi ng_const =0;
19: for (int x=0; x<MAXX; x++)
20: for (int y=0; y<MAXY; y++)
i~z —r1z

21: P10 1= [0( Mg ) - o (f957)]:
22: nor mal i zi ng_const +=p(z 11/ 1)XYl- PO 41/Z)X] [ Y]
23: for (int x=0; Xx<MAXX; x++)
24: for (int y=0; y<MAXY; y++)

. P(z+1%+2) XY PO 1) XY
25: PO 41X [Y] = ZH%OX:;‘}I Tzi ng_xéonlst ’
26: node_l i st nei ghbori ng_.nodes=get _nei ghbors(iter);
27: append_t ol i st (nei ghboring_nodes, self);
28: max.l=—c; argnax-=self;
29: for (node tenp=get first(neighboringnodes); tenp!=NULL; tenp=get ._next (neighboring.nodes))
30: P, 4 17)=0;
31: for (int x=0; x<MAXX; x++)
32: for (int y=0; y<MAXY; y++)
33: P02 1 DX [Y] =Pz 1 ) X1 [Y] @ emp-plxe 1 )XV
34: P, 4 [Z)+=P04s, 2 4 X1 [V
35: for (int x=0; x<NAXX; x++)
36: for (int y=0; y<MAXY; y++)

PO+ 1.2 1 [Z) XY
37 I+ =log - — | - PO17 1 [P
PO 1120 MY PEE, 4 [7) i

38: if (max-l<ly) argmax-lg=tenp;
39: if (argmax.!=self) naster=false;
40: mast er @r gmex-l=true;

Fig. 5. Procedural Code for Vehicle Tracking

where variables are synchronized at the beginning of antévep (at line 11 of every
iteration). A more general direction, which we have left foture work is to explore
temporal data abstractiong hese would allow programmers to express which samples
of the time seriep(.)[x|[y] from remote nodes are of interest, while possibly allowing
Kairos to preserve loose synchrony.

4 Kairos Evaluation

We have implemented the programming primitives discusedtie previous section
in Python using its embedding and extendability API's [Hnhd have experimented
with the three distributed algorithms described thereinrd/discussion about our im-
plementation and evaluation can be found in [13]. Our tekitbe hybrid network of
ground nodes and nodes mounted on a ceiling array. The 1&dnoodes are Star-
gates [32] that each run Kairos. In this setup, Kairos usest&nj33] to implement
end-to-end reliable routing and topology management. &mist turn, uses a Mica2
mote [34] mounted on the Stargate node (the leftmost pigturegure 6 shows a single
Stargate+Mica2 node) as the underlying network interfacgroller (NIC) to achieve



realistic multihop wireless behavior. These Stargatesevdeployed in a small area
(middle picture in Figure 6), making all the nodes reachdiwen any other node in
a single physical hop (we created logical multihops oves Hat in the experiments
below). The motes run TinyOS [35], but with S-MAC [36] as thé\®! layer.

There is also an 8-node array of Mica2dots [37] mounted onilag€rightmost
picture in Figure 6), and connected through a multiportasentroller to a standard
PC that runs 8 Emstar processes. Each Emstar process sansinlgle Mica2dot and
is attached to a Kairos process that also runs on the host f€aifangement allows
us to extend the size of the evaluated network while stillntz@ning some measure
of realism in wireless communication. The ceiling MicaZzdahd ground Mica2s re-
quire physical multihopping for inter-node communicatidfe Mica2dot portion of
the network also uses physical multihopping for inter-nodeamunication.

Fig. 6. Stargate with Mica2 as a NIC (left), Stargate Array (middle), and Ceiling RtloaArray
(right)

To conduct experiments with a variety of controlled topadsgwe wrote a topol-
ogy manager in Emstar that enables us to specify neighbora fiven node and
blacklist/whitelist a given neighbor. Dynamic topologi@sre simulated by blacklist-
ing/whitelisting neighbors while the experiment was ingmess. The end-to-end reli-
able routing module keeps track of all the outgoing packetstiie source node) and
periodically retransmits the packets until an acknowleegnis received from the des-
tination. Hop-by-hop retransmission by S-MAC is completaenand used as a per-
formance enhancement.

Routing Tree Performance: We implemented the routing tree described in Section 3.2
in Kairos, and measured its performance. For comparisopgges, we also imple-
mented One Phase Pull (OPP) [38] routing directly in Em&&P forms the base-
line case because it is the latest proposed refinement fectdd-diffusion that is de-
signed to be traffic-efficient by eliminating exploratorytalanessages: the routing tree
is formed purely based on interest—requests (interestagessn directed diffusion) that
are flooded to the network and responses (data) are routeg tle gradients setup by
the interest. To enable a fair comparison of the Kairos ngutiee with OPP, we also
implemented reliable routing for OPP.

We varied the number of nodes in our network, and measuretintiegit takes for
the routing tree in each case to stabilize (convergence tianel the overhead incurred
in doing so. In the case of OPP, the resulting routing tree moaylways be the shortest
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Fig. 7. Convergence Time (left), Overhead (middle), and OPP Stretch (rightf)é¢ Routing Tree
Program

path routing tree (directed diffusion does not require)thahile Kairos always builds

a correct shortest path routing tree. So we additionallysmesthe “stretch” (the aver-
aged node deviation from the shortest path tree) of thetieg PP tree with respect to
the Kairos shortest path tree. Thus, this experiment sawvasenchmark for efficiency
and correctness metrics for Kairos’ eventual consistenagieh

We evaluated two scenarios: first to build a routing tree feanatch on a quiescent
network, and second to study the dynamic performance wher $inks are deleted
after the tree is constructed. Figure 7 shows the conveegéne (“K” is for Kairos, and
“before” and “after” denote the two scenarios before andrdiihk failures), overhead,
and stretch plots for OPP and Kairos averaged across neultipls; for stretch, we
also plot the OPP standard deviation. It can be seen thab¥aiways generates a
better quality routing tree than OPP (OPP stretch is higtsrecially as the network
size increases) without incurring too much higher convecgdime ¢30%) and byte
overhead costs«(2x) than OPP.

L ocalization: We have implemented the collaborative multilateratiorogtgm de-
scribed in Section 3.2. Since we did not have the actual seifstirasound and good
radio signal strength measurement) for ToA (Time of Arfivainging, we hard-coded
the pairwise distances obtained from a simulation as viesah the Kairos program in-
stead of acquiring them physically. We believe this is areptable artifact that does not
compromise the results below. We perturbed the pairwisantss with white Gaus-
sian noise (standard deviation 20mm to match experimep®)ito reflect the realistic
inaccuracies incurred with physical ranging devices.

We consider two scenarios in both of which we vary the totahber of nodes. In
the first case (left graph in Figure 8), we use topologies iichvall nodes are localiz-
able given a sufficient number and placement of initial beagades, and calculate the
average localization error for a given number of nodes. Tieesme localization error in
Kairos is within the same order shown in [2, Figure 9], thgrebnfirming that Kairos
is competitive here. Note that this error decreases witrea®ing network size as ex-
pected because the Gaussian noise introduced by rangiegrsased at each node by
localizing with respect to multiple sets of ranging noded aweraging the results. In
the second scenario (right graph in Figure 8), we vary thegrgage of initial beacon
nodes for the full 24 node topology, and calculate how mardesailtimately become
localizable. This graph roughly follows the pattern extaétiin [2, Figure 12], thereby
validating our results again.
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Fig. 8. Average Error in Localization (L) and Localization Success Rate (R)

Vehicle Tracking: For this purpose, we use the same vehicle tracking parasneter
as used in [14] (for grid size, vehicle speed, sound RMS, stamaensor measurement
simulations, sensor placement and connectivity, and Baeof-Arrival sensor mea-
surements) for comparing how Kairos performs against [Adlirect head-to-head
comparison against the original algorithm is not possilgledoise we have fewer nodes
than they have in their simulations, so we present the estithe implementation in a
tabular form similar to theirs. We simulate the movement eéhicle along the Y-axis
at a constant velocity. The motion therefore perpendibulzisects the X-axis.

We do two sets of experiments. The first one is to measuredbkig accuracy as
denoted by the location erroffumse — X||) and its standard deviatiofj{— fumse/|?)
as well as the tracking overhead as denoted by the belief atatve vary the number
of sensors (K). The main goal here is to see whether we obggve performance
improvement as we double the number of sensors from 12 to 24al#le 1 shows, this
is indeed the case: the error, error deviation, and exclibhgkef state all decrease,
and in the expected relative order.

Avg
[*MMSE —X

’ | Avg

K 2 Apusel?
12| 4239 1875.47 135
14! 37.24 1297.39 104
16| 3473 1026.43 89
18! 31.52 876.54 76
20 28.96 721.68 67
22| 26.29 564.32 60
24| 2481 29758 54

Avg Overheal
(bytes)

Table 1. Performance of Vehicle Tracking in Kairos

In the second experiment, we vary the percentage of sendesribat are equipped
with sensors that can do Direction-of-arrival (DOA) basaaging, and not just direction-
agnostic circular acoustic amplitude sensors. Thesetsesid described in [13].



5 Conclusion and Future Work

This paper should be viewed as an initial exploration intadipular model of macro-

programming sensor networks. Our contribution in this pép@troducing, describing,

and evaluating this model on its expressivity, flexibilignd real-world performance
metrics. Kairos is not perfect in that, at least in its cutrienarnation, it does not fully

shield programmers from having to understand the perfocmamd robustness im-
plications of structuring programs in a particular way; wloes it currently provide

handles to let an application control the underlying ruetisources for predictability,
resource management, or performance reasons. Finallg Kairos includes a middle-

ware communication layer in the runtime service that sbesitserialized program vari-
ables and objects across realistic multihop radio linkdaypthis layer lacks the ability
to optimize communication patterns for a given sensorrltmy. Therefore, we be-
lieve that Kairos opens up several avenues of research thanable us to explore the
continuum of tradeoffs between transparency, ease of @noging, performance, and
desirable systems features arising in macroprogrammiegsos network.
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