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Abstract. The literature on programming sensor networks has focused so far on
providing higher-level abstractions for expressinglocal node behavior.Kairos is a
natural next step in sensor network programming in that it allows the programmer
to express, in a centralized fashion, the desiredglobal behavior of a distributed
computation on the entire sensor network. Kairos’ compile-time and runtimesub-
systems expose a small set of programming primitives, while hiding fromthe pro-
grammer the details of distributed-code generation and instantiation, remotedata
access and management, and inter-node program flow coordination. In this paper,
we describe Kairos’ programming model, and demonstrate its suitability, through
actual implementation, for a variety of distributed programs—both infrastructure
services and signal processing tasks—typically encountered in sensornetwork
literature: routing tree construction, localization, and object tracking. Ourexper-
imental results suggest that Kairos does not adversely affect the performance or
accuracy of distributed programs, while our implementation experiencessuggest
that it greatly raises the level of abstraction presented to the programmer.

1 Introduction and Motivation

Wireless sensor networks research has, to date, made impressive advances in platforms
and software services [1–3]. The utility and practicality of dense sensing using wireless
sensor networks has also been demonstrated recently [4–6].It is now time to consider
an essential aspect of sensor network infrastructure—support for programmingwire-
less sensor network applications and systems components ata suitably high-level of
abstraction. Many of the same reasons that have motivated the re-design of the net-
working stack for sensor networks (energy-efficiency, different network use models)
also motivate a fresh look at programming paradigms for these networks.

Two broad classes of programming models are currently beinginvestigated by the
community. One class focuses on providing higher-level abstractions for specifying a
node’slocal behaviorin a distributed computation. Examples of this approach include
the recent work on node-local or region-based abstractions[7, 8]. By contrast, a sec-
ond class considers programming a sensor networkin the large(this has sometimes
been calledmacroprogramming). One line of research in this class enables a user to
declaratively specify a distributed computation over a wireless sensor network, where



the details of the network are largely hidden from the programmer. Examples in this
class include TinyDB [9, 10], and Cougar [11].

Kairos’ programming model specifies theglobal behaviorof a distributed sensornet
computation using acentralizedapproach to sensornet programming. Kairos presents
an abstraction of a sensor network as a collection of nodes (Section 3) that can all be
tasked together simultaneously within asingleprogram. The programmer is presented
with three constructs: reading and writing variables at nodes, iterating through the one-
hop neighbors of a node, and addressing arbitrary nodes. Using only these three simple
language constructs, programmersimplicitly express both distributed data flow and dis-
tributed control flow. We argue that these constructs are also natural for expressing
computations in sensor networks: intuitively, sensor network algorithms processnamed
data generated at individual nodes, often by moving such data to other nodes. Allowing
the programmer to express the computation by manipulatingvariablesat nodesallows
us to almost directly use “textbook” algorithms, as we show later in detail in Section 3.2.

Given the single centralized program, Kairos’ compile-time and runtime systems
construct and help execute a node-specialized version of the compiled program for all
nodes within a network. The code generation portion of Kairos is implemented as a
language preprocessor add-on to the compiler toolchain of the native language. The
compiled binary that is the single-node derivation of the distributed program includes
runtime calls to translate remote reads and, sometimes, local writes into network mes-
sages. The Kairos runtime library that is present at every node implements these run-
time calls, and communicates with remote Kairos instances to manage access to node
state. Kairos islanguage-independentin that its constructs can be retrofitted into the
toolchains of existing languages.

Kairos (and the ideas behind it) are related to shared-memory based parallel pro-
gramming models implemented over message passing infrastructures. Kairos is dif-
ferent from these in one important respect. It leverages theobservation that most dis-
tributed computations in sensor networks will rely oneventual consistencyof shared
node state both for robustness to node and link failure, and for energy efficiency. Kairos’
runtimeloosely synchronizesstate across nodes, achieving higher efficiency and greater
robustness over alternatives that provide tight distributed program synchronization se-
mantics (such Sequential Consistency, and variants thereof [12]).

We have implemented Kairos as an extension to Python. Due to space constraints
of this paper, we describe our implementation of the language extensions and the run-
time system in detail in a technical report [13]. On Kairos, we have implemented three
distributed computations that exemplify system services and signal processing tasks
encountered in current sensor networks: constructing a shortest path routing tree, local-
izing a given set of nodes [2], and vehicle tracking [14]. We exhibit each of them in
detail in Section 3 to illustrate Kairos’ expressibility. We then demonstrate through ex-
tensive experimentation (Section 4) that Kairos’ level of abstraction does not sacrifice
performance, yet enablescompactandflexiblerealizations of these fairly sophisticated
algorithms. For example, in both the localization and vehicle tracking experiments, we
found that the performance (convergence time, and network message traffic) and ac-
curacy of Kairos are within 2x of the reported performance ofexplicitly distributed
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Fig. 1. Taxonomy of Programming Models for Sensor Networks

original versions, while the Kairos versions of the programs are more succinct and, we
believe, are easier to write.

2 Related Work

In this section, we give a brief taxonomy (Figure 1) of sensornet programming and
place our work in the context of other existing work in the area. The term “sensor-
net programming” seems to refer to two broad classes of work that we categorize as
programming abstractionsandprogramming support. The former class is focused on
providing programmers with abstractions of sensors and sensor data. The latter is fo-
cused on providing additional runtime mechanisms that simplify program execution.
Examples of such mechanisms include safe code execution, orreliable code distribu-
tion.

We now consider the research on sensor network programming abstractions. Broadly
speaking, this research can be sub-divided into two sub-classes: one sub-class focuses
on providing the programmer abstractions that simplify thetask of specifying the node
local behaviorof a distributed computation, while the second enables programmers to
express theglobal behaviorof the distributed computation.

In the former sub-class, three different types of programming abstractions have been
explored. For example, Liuet al. [15] and Cheonget al. [16] have considered node
group abstractions that permit programmers to express communication within groups
sharing some common group state. Data-centric mechanisms are used to efficiently im-
plement these abstractions. By contrast, Mainlandet al. [8] and Whitehouseet al. [7]
show that topologically defined group abstractions (“neighborhoods” and “regions” re-
spectively) are capable of expressing a number of local behaviors powerfully. Finally,
the work on EIP [17] provides abstractions for physical objects in the environment,
enabling programmers to express tracking applications.

Kairos falls into the sub-class focused on providing abstractions for expressing the
global behavior of distributed computations. One line of research in this sub-class pro-



videsnode-independentabstractions—these programming systems do not contain ex-
plicit abstractions for nodes, but rather express a distributed computation in a network-
independent way. Thus, the work on SQL-like expressive but Turing-incomplete query
systems (e.g.,TinyDB [10, 9] and Cougar [11]), falls into this class. Another body of
work provides support for expressing computations over logical topologies [18, 19] or
task graphs [20] which are then dynamically mapped to a network instance. This repre-
sents a plausible alternative to macroprogramming sensor networks. However, export-
ing the network topology as an abstraction can impose some rigidity in the program-
ming model. It can also add complexity to maintaining the mapping between the logical
and the physical topology when nodes fail.

Complementary to these approaches,node-dependentabstractions allow a program-
mer to express the global behavior of a distributed computation in terms of nodes and
node state. Kairos, as we shall discuss later, falls into this class. As we show, these
abstractions are natural for expressing a variety of distributed computations. The only
other piece of work in this area is Regiment [21], a recent work. While Kairos focuses
on a narrow set of flexible language-agnostic abstractions,Regiment focuses on explor-
ing how functional programmingparadigms might be applied to programming sensor
networks in the large, while Split-C [22] provides “split” local-global address spaces to
ease parallel programming that Kairos also provides through the remote variable access
facility, but confines itself to the “C” language that lacks arich object-oriented data
model and a language-level concurrency model . Therefore, the fundamental concepts
in these two works are language-specific.

Finally, quite complementary to the work on programming abstractions is the large
body of literature devoted to systems in support of network programming. Such sys-
tems enable high-level composition of sensor network applications (Sensorware [23]
and SNACK [24]), efficient distribution of code (Deluge [25]), support for sandboxed
application execution (Maté [26]), and techniques for automatic performance adapta-
tion (Impala [27]).

3 Kairos Programming Model

In this section, we describe the Kairos abstractions and discuss their expressibility and
flexibility using three canonical sensor network distributed applications: routing tree
construction, ad-hoc localization, and vehicle tracking.

3.1 Kairos Abstractions and Programming Primitives

Kairos is a simple set of extensions to a programming language that allows program-
mers to express the global behavior of a distributed computation. Kairos extends the
programming language by providing three simple abstractions.

The first of these is thenodeabstraction. Programmers explicitly manipulate nodes
and lists of nodes. Nodes are logicallynamedusing integer identifiers. The logical nam-
ing of nodes doesnot correspond to a topological structure. Thus, at the time of pro-
gram composition, Kairos does not require programmers to specify a network topology.
In Kairos, thenode datatype exports operators like equality, ordering (basedon node



name), and type testing. In addition, Kairos provides anode list iterator data type for
manipulating node sets.

The second abstraction that Kairos provides is the list ofone-hop neighborsof a
node. Syntactically, the programmer calls aget neighbors() function. The Kairos
runtime returns the current list of the node’s radio neighbors. Given the broadcast na-
ture of wireless communication, this is a natural abstraction for sensor network pro-
gramming (and is similar toregions[8], andhoods[7]). Programmers are exposed to
the underlying network topology using this abstraction. A Kairos program typically is
specified in terms of operations on the neighbor list; it may construct more complex
topological structures by iterating on these neighbors.

The third abstraction that Kairos provides isremote data access, namely the ability
to read from variables at named nodes. Syntactically, the programmer uses avariable@node
notation to do this. Kairos itself does not impose any restrictions on which remote vari-
ables may be read where and when. However, Kairos’ compiler extensions respect the
scoping, lifetime, and access rules of variables imposed bythe language it is extend-
ing. Of course, variables of types with node-local meaning (e.g.,file descriptors, and
memory pointers) cannot be meaningfully accessed remotely.
Node Synchronization: Kairos’ remote access facility effectively provides a shared-
memory abstraction across nodes. The key challenge (and a potential source of ineffi-
ciency) in Kairos is the messaging cost of synchronizing node state. One might expect
that nodes would need to synchronize their state with other nodes (update variable val-
ues at other nodes that have cached copies of those variables, or coordinate writes to a
variable) often. In Kairos, only a node may write to its variable, thus mutually exclusive
access to remote variables is not required; thereby, we alsoeliminate typically subtle
distributed programming bugs arising from managing concurrent writes.

Kairos leverages another property of distributed algorithms for sensor networks in
order to achieve low overhead. We argue that, for fairly fundamental reasons, distributed
algorithms will rely on a property we calleventual consistency: individual intermediate
node states are not guaranteed to be consistent, but, in the absence of failure, the com-
putation eventually converges. This notion of eventual consistency is loosely molded
on similar ideas previously proposed in well-known systemssuch as Bayou [28]. The
reason for this, is, of course, that sensor network algorithms need to be highly robust
to node and link failures, and many of the proposed algorithms for sensor networks use
soft-state techniques that essentially permit only eventual consistency.

Thus, Kairos is designed under the assumption thatloose synchronyof node state
suffices for sensor network applications. Loose synchrony means that a read from a
client to a remote object blocksonly until the referenced object is initialized and avail-
able at the remote node andnot on every read to the remote variable. This allows nodes
to synchronize changed variables in a lazy manner, thereby reducing communication
overhead. However, a reader might be reading a stale value ofa variable, but because of
the way distributed applications are designed for sensor networks, the nodes eventually
converge to the right state. Where this form of consistency isinadequate, we provide a
tighter consistency model, as described at the end of this section.
The Mechanics of Kairos Programming: Before we discuss examples of program-
ming in Kairos, we discuss the mechanics of programming and program execution (Fig-
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Fig. 2. Kairos Programming Architecture

ure 2). As we have said before, the distinguishing feature ofKairos is that programmers
write a singlecentralizedversion of the distributed computation in a programming lan-
guage of their choice. This language, we shall assume, has been extended to incorporate
the Kairos abstractions. For ease of exposition, assume that a programmer has written
a centralized programP that expresses a distributed computation; in the rest of this
section, we discuss the transformations onP performed by Kairos.

Kairos’ abstractions are first processed using apreprocessorwhich resides as an
extension to the language compiler. Thus,P is first pre-processed to generate annotated
source code, which is then compiled into a binaryPb using the native language com-
piler. While P represents a global specification of the distributed computation,Pb is a
node-specific version that contains code for what a single node does at any time, and
what data, both remote and local, it manipulates.

In generatingPb, the Kairos preprocessor identifies and translates references to re-
mote data into calls to the Kairosruntime. Pb is linked to the Kairos runtime and can be
distributed to all nodes in the sensor network through some form of code distribution
and node re-programming facility [29, 25]. When a copy is instantiated and run on each
sensor node, the Kairos runtime exports and manages programvariables that are owned
by the current node but are referenced by remote nodes; theseobjects are calledman-
aged objectsin Figure 2. In addition, it also caches copies of managed objects owned
by remote nodes in itscached objectspool. Accesses to both sets of objects are man-
aged through queues as asynchronous request/reply messages that are carried over a
potentially multihop radio network.

The user program that runs on a sensor node callssynchronouslyinto Kairos runtime
for reading remote objects, as well as for accessing local managed objects. These syn-
chronous calls are automatically generated by the preprocessor. The runtime accesses
these cached and managed objects on behalf of the program after suspending the call-
ing thread. The runtime uses additional background threadsto manage object queues,



1: void buildtree(node root)
2: node parent, self;
3: unsigned short dist_from_root;
4: node_list neighboring_nodes, full_node_set;
5: unsigned int sleep_interval=1000;

//Initialization
6: full_node_set=get_available_nodes();
7: for (node temp=get_first(full_node_set); temp!=NULL; temp=get_next(full_node_set))
8: self=get_local_node_id();
9: if (temp==root)
10: dist_from_root=0; parent=self;
11: else dist_from_root=INF;
12: neighboring_nodes=create_node_list(get_neighbors(temp));
13: full_node_set=get_available_nodes();
14: for (node iter1=get_first(full_node_set); iter1!=NULL; iter1=get_next(full_node_set))
15: for(;;) //Event Loop
16: sleep(sleep_interval);
17: for (node iter2=get_first(neighboring_nodes); iter2!=NULL; iter2=get_next(neighboring_nodes))
18: if (dist_from_root@iter2+1<dist_from_root)
19: dist_from_root=dist_from_root@iter2+1;
20: parent=iter2;

Fig. 3. Procedural Code for Building a Shortest-path Routing Tree

but this aspect is transparent to the application, and the application is only aware of the
usual language threading model.

3.2 Examples of Programming with Kairos

We now illustrate Kairos’ expressibility and flexibility bydescribing how Kairos may
be used to program three different distributed computations that have been proposed for
sensor networks: routing tree construction, localization, and vehicle tracking.

Routing Tree Construction In Figure 3, we illustrate acompleteKairos program for
building a routing tree with a given root node. We have implemented this algorithm,
and evaluate its performance in Section 4. Note that our program implements shortest-
path routing, rather than selecting paths based on link-quality metrics [30]: we have
experimented with the latter as well, as we describe below.

The code shown in Figure 3 captures the essential functionality involved in con-
structing a routing tree while maintaining brevity and clarity. It shows how a centralized
Kairos task looks, and illustrates how the Kairos primitives are used to express such a
task. Program variabledist from root is the only variable that needs to be remotely
accessed in lines 18-19, and is therefore amanaged objectat a source node and acached
objectat the one-hop neighbors of the source node that programmatically read this vari-
able. The program also shows how thenode andnode list datatypes and their API’s
are used.get available nodes() in lines 6 and 13 instructs the Kairos preprocessor
to include the enclosed code for each iterated node; it also provides an iterator handle
that can be used for addressing nodes from the iterator’s perspective, as shown in line
12. Finally, the program shows how theget neighbors() function is used in line 12
to acquire the one-hop neighbor list at every node.

The event loop between lines 15-20 that runs at all nodes eventually picks a short-
est path from a node to theroot node. Our implementation results show that the path
monotonically converges to the optimal path, thereby demonstrating progressive cor-
rectness. Furthermore, the path found is stable and does notchange unless there are
transient or permanent link failures that cause nodes to be intermittently unreachable.



This event loop illustrates how Kairos leverages eventual consistency. The access
to the remote variabledist from root need not be synchronized at every step of the
iteration; the reader can use the current cached copy, and use a lazy update mechanism
to avoid overhead. As we shall see in Section 4, the convergence performance and the
message overhead of loose synchrony in real-world experiments is reasonable. We also
tried metrics other than shortest hop count (such as fixing parents according to available
bandwidth or loss rates, a common technique used in real-world routing systems [3]),
and we found that the general principle of eventual consistency and loose synchrony
can be applied to such scenarios as well.

Let us examine Figure 3 for the flexibility programming to theKairos model af-
fords. If we want to change the behavior of the program to havethe tree construction
algorithm commence at a pre-set time that is programmed intoa base station node
with id 0, we could add a single line before the start of thefor(){} loop at line
7: sleep(starting time@0-get current time()). The runtime would then au-
tomatically fetch thestarting time value from node 0.

Distributed Localization using Multi-lateration Figure 4 gives a complete distributed
program for collaboratively fixing the locations of nodes with unknown coordinates.
The basic algorithm was developed by Savvideset al.[2]. Our goal in implementing this
algorithm in Kairos was to demonstrate that Kairos is flexible and powerful enough to
program a relatively sophisticated distributed computation. We also wanted to explore
how difficult it would be to program a “textbook” algorithm inKairos, and compare the
relative performance of Kairos with the reported original version (Section 4).

The goal of the “cooperative multi-lateration” algorithm is to compute the locations
of all unknown nodes in a connected meshed wireless graph given ranging measure-
ments between one-hop neighboring nodes and a small set of beacon nodes that already
know their position. Sometimes, it may happen that there arenot enough beacon nodes
in the one-hop vicinity of an unknown node for it to mathematically laterize its loca-
tion. The basic idea is to iteratively search for enough beacons and unknown nodes in
the network graph so that, taken together, there are enough measurements and known
co-ordinates to successfully deduce the locations of all unknown nodes in the sub-graph.

Figure 4 shows the complete code for the cooperative multi-lateration algorithm.1

The code localizes non-beacon nodes by progressively expanding the subgraph, (subgraph to localize),
considered at a given node with next-hop neighbors of unlocalized leaf vertexes (unlocalized leaves),
and is an implementation of Savvides’ algorithm [2]. The process continues until either
all nodes in the graph are considered (lines 20-25) and the graph is deemed unlocaliz-
able, or until the initiator localizes itself (using the auxiliary functionsubgraph check())
after acquiring a sufficient number of beacon nodes. This program once again illustrates
eventual consistency because the variablelocalized@node is a monotonic boolean,
and eventually attains its correct asymptotic value when enclosed in an event loop. We
also found an interesting evidence to the value of Kairos’ centralized global program
specification approach—we encountered a subtle logical (corner-case recursion) bug in

1 Of course, we have not included the low-level code that actually computes the range estimates
using ultrasound beacons. Our code snippet assumes the existence ofnode-local OS/library
support for this purpose.



1: void CooperativeMultilateration()

2: boolean localized=false, not_localizable=false, is_beacon=GPS_available();
3: node self=get_local_node_id();
4: graph subgraph_to_localize=NULL;

5: node_list full_node_set=get_available_nodes();
6: for (node iter=get_first(full_node_set); iter!=NULL; iter=get_next(full_node_set)))

//At each node, start building a localization graph
7: participating_nodes=create_graph(iter);
8: node_list neighboring_nodes=get_neighbors(iter);
9: while ((!localized || !is_beacon) && !not_localizable)
10: for (node temp=get_first(neighboring_nodes); temp!=NULL; temp=get_next(neighboring_nodes))

//Extend the subgraph with neighboring nodes
11: extend_graph(subgraph_to_localize, temp, localized@temp||is_beacon@temp?beacon:unknown);

//See if we can localize the currently available subgraph
12: if (graph newly_localized_g=subgraph_check(subgraph_to_localize))
13: node_list newly_localized_l=get_vertices(newly_localized_g);
14: for (node temp=get_first(newly_localized_l); temp!=NULL; temp=get_next(newly_localized_l))
15: if (temp==iter) localized=true;
16: continue;

//If not, add nodes adjacent to the leaves of the accumulated subgraph and try again
17 node_list unlocalized_leaves;
18: unlocalized_leaves=get_leaves(subgraph_to_localize);
19: boolean is_extended=false;
20: for (node temp=get_first(unlocalized_leaves); temp!=NULL; temp=get_next(unlocalized_leaves))
21: node_list next_hop_l=get_neighbors(temp);
22: for (node temp1=get_first(next_hop_l); temp1!=NULL; temp1=get_next(next_hop_l))
23: extend_graph(subgraph_to_localize, temp1, localized@temp1||is_beacon@temp1?beacon:unknown);
24: is_extended=true;
25: if (!is_extended) not_localizable=true;

Fig. 4. Procedural Code for Localizing Sensor Nodes

the original algorithm described in [2] in a local (i.e.,bottom-up, node-specific) manner,
that became apparent in Kairos.

Vehicle Tracking For our final example, we consider a qualitatively differentapplica-
tion: tracking moving vehicles in a sensor field. The programin Figure 5 is a straight-
forward translation of the algorithm described in [14]. This algorithm uses probabilistic
techniques to maintain belief states at nodes about the current location of a vehicle in
a sensor field. Lines 14-16 correspond to step 1 of the algorithm given in [14, p. 7]
where nodes diffuse their beliefs about the vehicle location. Lines 17-21 compute the
probability of the observationzt+1 at every grid location given vehicle locationxt+1 at
time t +1 (step 2 of the algorithm) using the latest sensing sample and vehicle dynam-
ics. Lines 23-25 compute the overall posteriori probability of the vehicle position on
the rectangular grid after incorporating the latest posteriori probability (step 3 of the
algorithm). Finally, lines 26-40 compute the information utilities, Ik’s, at all one-hop
neighboring nodesk for every node, and pick thatk = argmaxIk that maximizes this
measure (steps 4 and 5). This node becomes the new “master” node: i.e., it executes the
steps above for the next epoch, using data from all other nodes in the process.

This program illustrates an important direction of future work in Kairos. In this al-
gorithm, the latest values ofp(zt+1|xt+1)[x][y]@neighbors must be used in line 33 at
the master because thesep(.)[x][y]’s are computed at each sensor node using the latest
vehicle observation sample. With our loose synchronization model, we cannot insure
that the master uses these latest values computed at the remote sensor nodes because
stale cached values may be returned instead by the master Kairos runtime, thereby ad-
versely impacting the accuracy and convergence time of the tracking application. There
are two possible solutions to this. One, which we have implemented currently in Kairos,
is to provide a slightly tighter synchronization model thatwe call loop-level synchrony,



1: void track vehicle()
2: boolean master=true;
3: float zt+1, normalizing const;
4: float p(xt |zt )[MAX X][MAX Y], p(xt+1|zt )[MAX X][MAX Y],

p(zt+1|xt+1)[MAX X][MAX Y], p(xt+1,zkt+1|zt )[MAX X][MAX Y], p(zkt+1|zt ), p(xt+1|zt+1)[MAX X][MAX Y];

5: float max Ik=Ik; node argmax Ik, self=get local node id();
6: node list full node set=get available nodes();
7: for (node iter=get first(full node set); iter!=NULL; iter=get next(full node set))
8: for (int x=0; x<MAX X; x++)
9: for (int y=0; y<MAX Y; y++)

10: p(xt |zt )[x][y]=
1

MAX X×MAX Y ;
11: for(;;)
12: sleep();
13: if (master)
14: for (int x=0; x<MAX X; x++)
15: for (int y=0; y<MAX Y; y++)

16: p(xt+1|zt )[x][y]= ∑
0≤x′<MAX X

∑
0≤y′<MAX Y

δ (

√

x′2 +y′2−

√

x2 +y2−v)p(xt |zt )

δ (

√

x′2 +y′2−

√

x2 +y2−v)
;

17: zt+1=sense z();
18: normalizing const=0;
19: for (int x=0; x<MAX X; x++)
20: for (int y=0; y<MAX Y; y++)

21: p(zt+1|xt+1)[x][y]= r
δa

[

Φ
( ahi−rz

rσ
)

−Φ
( alo−rz

rσ
)]

;

22: normalizing const+=p(zt+1|xt+1)[x][y] · p(xt+1|zt )[x][y];
23: for (int x=0; x<MAX X; x++)
24: for (int y=0; y<MAX Y; y++)

25: p(xt+1|zt+1)[x][y]=
p(zt+1|xt+1)[x][y]·p(xt+1|zt )[x][y]

normalizing const ;

26: node list neighboring nodes=get neighbors(iter);
27: append to list(neighboring nodes, self);
28: max Ik=−∞; argmax Ik=self;
29: for (node temp=get first(neighboring nodes); temp!=NULL; temp=get next(neighboring nodes))

30: p(zkt+1|zt )=0;

31: for (int x=0; x<MAX X; x++)
32: for (int y=0; y<MAX Y; y++)

33: p(xt+1,zkt+1|zt )[x][y]=p(zt+1|xt+1)[x][y]@temp·p(xt+1|zt )[x][y];

34: p(zkt+1|zt )+=p(xt+1,zkt+1|zt )[x][y];

35: for (int x=0; x<MAX X; x++)
36: for (int y=0; y<MAX Y; y++)

37: Ik+ = log





p(xt+1,zkt+1|zt )[x][y]

p(xt+1|zt )[x][y]p(zkt+1|zt )



 · p(xt+1,zkt+1|zt )[x][y];

38: if (max Ik<Ik) argmax Ik=temp;
39: if (argmax Ik!=self) master=false;
40: master@argmax Ik=true;

Fig. 5. Procedural Code for Vehicle Tracking

where variables are synchronized at the beginning of an event loop (at line 11 of every
iteration). A more general direction, which we have left forfuture work is to explore
temporal data abstractions. These would allow programmers to express which samples
of the time seriesp(.)[x][y] from remote nodes are of interest, while possibly allowing
Kairos to preserve loose synchrony.

4 Kairos Evaluation

We have implemented the programming primitives discussed in the previous section
in Python using its embedding and extendability API’s [31],and have experimented
with the three distributed algorithms described therein. More discussion about our im-
plementation and evaluation can be found in [13]. Our testbed is a hybrid network of
ground nodes and nodes mounted on a ceiling array. The 16 ground nodes are Star-
gates [32] that each run Kairos. In this setup, Kairos uses Emstar [33] to implement
end-to-end reliable routing and topology management. Emstar, in turn, uses a Mica2
mote [34] mounted on the Stargate node (the leftmost picturein Figure 6 shows a single
Stargate+Mica2 node) as the underlying network interface controller (NIC) to achieve



realistic multihop wireless behavior. These Stargates were deployed in a small area
(middle picture in Figure 6), making all the nodes reachablefrom any other node in
a single physical hop (we created logical multihops over this set in the experiments
below). The motes run TinyOS [35], but with S-MAC [36] as the MAC layer.

There is also an 8-node array of Mica2dots [37] mounted on a ceiling (rightmost
picture in Figure 6), and connected through a multiport serial controller to a standard
PC that runs 8 Emstar processes. Each Emstar process controls a single Mica2dot and
is attached to a Kairos process that also runs on the host PC. This arrangement allows
us to extend the size of the evaluated network while still maintaining some measure
of realism in wireless communication. The ceiling Mica2dots and ground Mica2s re-
quire physical multihopping for inter-node communication. The Mica2dot portion of
the network also uses physical multihopping for inter-nodecommunication.

Fig. 6. Stargate with Mica2 as a NIC (left), Stargate Array (middle), and Ceiling Mica2dot Array
(right)

To conduct experiments with a variety of controlled topologies, we wrote a topol-
ogy manager in Emstar that enables us to specify neighbors for a given node and
blacklist/whitelist a given neighbor. Dynamic topologieswere simulated by blacklist-
ing/whitelisting neighbors while the experiment was in progress. The end-to-end reli-
able routing module keeps track of all the outgoing packets (on the source node) and
periodically retransmits the packets until an acknowledgment is received from the des-
tination. Hop-by-hop retransmission by S-MAC is complementary and used as a per-
formance enhancement.
Routing Tree Performance: We implemented the routing tree described in Section 3.2
in Kairos, and measured its performance. For comparison purposes, we also imple-
mented One Phase Pull (OPP) [38] routing directly in Emstar.OPP forms the base-
line case because it is the latest proposed refinement for directed-diffusion that is de-
signed to be traffic-efficient by eliminating exploratory data messages: the routing tree
is formed purely based on interest–requests (interest messages in directed diffusion) that
are flooded to the network and responses (data) are routed along the gradients setup by
the interest. To enable a fair comparison of the Kairos routing tree with OPP, we also
implemented reliable routing for OPP.

We varied the number of nodes in our network, and measured thetime it takes for
the routing tree in each case to stabilize (convergence time), and the overhead incurred
in doing so. In the case of OPP, the resulting routing tree maynot always be the shortest
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Fig. 7. Convergence Time (left), Overhead (middle), and OPP Stretch (right) for the Routing Tree
Program

path routing tree (directed diffusion does not require that), while Kairos always builds
a correct shortest path routing tree. So we additionally measure the “stretch” (the aver-
aged node deviation from the shortest path tree) of the resulting OPP tree with respect to
the Kairos shortest path tree. Thus, this experiment servesas a benchmark for efficiency
and correctness metrics for Kairos’ eventual consistency model.

We evaluated two scenarios: first to build a routing tree fromscratch on a quiescent
network, and second to study the dynamic performance when some links are deleted
after the tree is constructed. Figure 7 shows the convergence time (“K” is for Kairos, and
“before” and “after” denote the two scenarios before and after link failures), overhead,
and stretch plots for OPP and Kairos averaged across multiple runs; for stretch, we
also plot the OPP standard deviation. It can be seen that Kairos always generates a
better quality routing tree than OPP (OPP stretch is higher,especially as the network
size increases) without incurring too much higher convergence time (∼30%) and byte
overhead costs (∼2x) than OPP.

Localization: We have implemented the collaborative multilateration algorithm de-
scribed in Section 3.2. Since we did not have the actual sensors (ultrasound and good
radio signal strength measurement) for ToA (Time of Arrival) ranging, we hard-coded
the pairwise distances obtained from a simulation as variables in the Kairos program in-
stead of acquiring them physically. We believe this is an acceptable artifact that does not
compromise the results below. We perturbed the pairwise distances with white Gaus-
sian noise (standard deviation 20mm to match experiments in[2]) to reflect the realistic
inaccuracies incurred with physical ranging devices.

We consider two scenarios in both of which we vary the total number of nodes. In
the first case (left graph in Figure 8), we use topologies in which all nodes are localiz-
able given a sufficient number and placement of initial beacon nodes, and calculate the
average localization error for a given number of nodes. The average localization error in
Kairos is within the same order shown in [2, Figure 9], thereby confirming that Kairos
is competitive here. Note that this error decreases with increasing network size as ex-
pected because the Gaussian noise introduced by ranging is decreased at each node by
localizing with respect to multiple sets of ranging nodes and averaging the results. In
the second scenario (right graph in Figure 8), we vary the percentage of initial beacon
nodes for the full 24 node topology, and calculate how many nodes ultimately become
localizable. This graph roughly follows the pattern exhibited in [2, Figure 12], thereby
validating our results again.
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Vehicle Tracking: For this purpose, we use the same vehicle tracking parameters
as used in [14] (for grid size, vehicle speed, sound RMS, acoustic sensor measurement
simulations, sensor placement and connectivity, and Direction-of-Arrival sensor mea-
surements) for comparing how Kairos performs against [14].A direct head-to-head
comparison against the original algorithm is not possible because we have fewer nodes
than they have in their simulations, so we present the results of the implementation in a
tabular form similar to theirs. We simulate the movement of avehicle along the Y-axis
at a constant velocity. The motion therefore perpendicularly bisects the X-axis.

We do two sets of experiments. The first one is to measure the tracking accuracy as
denoted by the location error (‖x̂MMSE−x‖) and its standard deviation (‖x̂− x̂MMSE‖

2)
as well as the tracking overhead as denoted by the belief state as we vary the number
of sensors (K). The main goal here is to see whether we observegood performance
improvement as we double the number of sensors from 12 to 24. As table 1 shows, this
is indeed the case: the error, error deviation, and exchanged belief state all decrease,
and in the expected relative order.

Avg Avg Avg Overhead
K ‖x̂MMSE−x‖ ‖x̂− x̂MMSE‖

2 (bytes)

12 42.39 1875.47 135
14 37.24 1297.39 104
16 34.73 1026.43 89
18 31.52 876.54 76
20 28.96 721.68 67
22 26.29 564.32 60
24 24.81 497.58 54

Table 1. Performance of Vehicle Tracking in Kairos

In the second experiment, we vary the percentage of sensor nodes that are equipped
with sensors that can do Direction-of-arrival (DOA) based ranging, and not just direction-
agnostic circular acoustic amplitude sensors. These results are described in [13].



5 Conclusion and Future Work

This paper should be viewed as an initial exploration into a particular model of macro-
programming sensor networks. Our contribution in this paper is introducing, describing,
and evaluating this model on its expressivity, flexibility,and real-world performance
metrics. Kairos is not perfect in that, at least in its current incarnation, it does not fully
shield programmers from having to understand the performance and robustness im-
plications of structuring programs in a particular way; nordoes it currently provide
handles to let an application control the underlying runtime resources for predictability,
resource management, or performance reasons. Finally, while Kairos includes a middle-
ware communication layer in the runtime service that shuttles serialized program vari-
ables and objects across realistic multihop radio links, today, this layer lacks the ability
to optimize communication patterns for a given sensornet topology. Therefore, we be-
lieve that Kairos opens up several avenues of research that will enable us to explore the
continuum of tradeoffs between transparency, ease of programming, performance, and
desirable systems features arising in macroprogramming a sensor network.
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